1,841 research outputs found
Shade-Grown Coffee: Simulation and Policy Analysis for Coastal Oaxaca, Mexico
Shade-grown coffee provides a livelihood to many farmers, protects biodiversity, and creates environmental services. Many shade-coffee farmers have abandoned production in recent years, however, in response to declines in international coffee prices. This paper builds a farmer decision model under price uncertainty and uses simulation analysis of that model to examine the likely impact of various policies on abandonment of shade-coffee plantations. Using information from coastal Oaxaca, Mexico, this paper examines the role of various constraints in abandonment decisions, reveals the importance of the timing of policies, and characterizes the current situation in the study region.coffee farming, decision analysis, numerical modeling, Monte Carlo, price variability
Revisiting the COUNTER Algorithms for List Update
COUNTER algorithms, a family of randomized algorithms for the list update problem, were introduced by Reingold, Westbrook and Sleator [7]. They showed that for any>0, there exist COUNTER algorithms that achieve a competitive ratio of p 3+. In this paper we use a mixture of two COUNTER algorithms to achieve a competitiveness of 12=7, which is less than p 3. Furthermore, we demonstrate that it is impossible to prove a competitive ratio smaller than 12=7 for any mixture of COUNTER algorithms using the typeofpotential function argument that has been used so far. We also provide new lower bounds for the competitiveness of COUNTER algorithms in the standard cost model, including a 1.625 lower bound for the variant BIT and a matching 12/7 lower bound for our algorithm.
Application-oriented classification of lidar profilers - or: Introducing lidars to power performance
Airborne Observation of the Hayabusa Sample Return Capsule Re-Entry
The Japan Aerospace Exploration Agency (JAXA) recently completed their Hayabusa asteroid exploration mission. Launched in 2003, Hayabusa made contact with, and retrieved a sample from, the near-Earth asteroid Itokawa in 2005. The sample return capsule (SRC) re-entered over the Woomera Test Range (WTR) in southern Australia on June 13, 2010, at approximately 11:21 pm local time (09:51 UTC). The SRC re-entry velocity was 12.2 km/s, making it the second-fastest Earth return velocity behind NASA s Stardust sample return capsule re-entry in 2006. From a space technology development perspective, Hayabusa s re-entry functioned as a rare flight experiment of an entry vehicle and its thermal protection system. In collaboration with the SETI Institute, NASA deployed its DC-8 airborne laboratory and a team of international researchers to Australia to observe the re-entry of the SRC. The use of an airborne platform enables observation above most clouds and weather and greatly diminishes atmospheric absorption of the optical signals. The DC-8 s flight path was engineered and flown to provide a view of the spacecraft that bracketed the heat pulse to the capsule. A suite of imaging instruments on board the DC-8 successfully recorded the luminous portion of the re-entry event. For approximately 70 seconds, the spectroscopic and radiometric instruments acquired images and spectra of the capsule, its wake, and destructive re-entry of the spacecraft bus. Figure 1 shows a perspective view of the WTR, the SRC re-entry trajectory, and the flight path of the DC-8. The SRC was jettisoned from the spacecraft bus approximately 3 hours prior to entry interface. Due to thruster failures on the spacecraft, it could not be diverted from the entry path and followed the trajectory of the SRC, where it burned up in the atmosphere between approximately 100 and 50 km altitude. Fortuitously, the separation distance between the spacecraft and SRC was sufficient to clearly resolve the SRC from the debris field of the burning spacecraft. Figure 2 shows a frame from a high-definition television camera on board the aircraft and denotes the locations of the SRC and spacecraft bus debris
Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design
On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (~60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at ~200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where the sample return capsule was expected to become visible. An overview of the design methodologies and trade-offs used in the Hayabusa re-entry observation campaign are presented
Scheduling Algorithms for Procrastinators
This paper presents scheduling algorithms for procrastinators, where the
speed that a procrastinator executes a job increases as the due date
approaches. We give optimal off-line scheduling policies for linearly
increasing speed functions. We then explain the computational/numerical issues
involved in implementing this policy. We next explore the online setting,
showing that there exist adversaries that force any online scheduling policy to
miss due dates. This impossibility result motivates the problem of minimizing
the maximum interval stretch of any job; the interval stretch of a job is the
job's flow time divided by the job's due date minus release time. We show that
several common scheduling strategies, including the "hit-the-highest-nail"
strategy beloved by procrastinators, have arbitrarily large maximum interval
stretch. Then we give the "thrashing" scheduling policy and show that it is a
\Theta(1) approximation algorithm for the maximum interval stretch.Comment: 12 pages, 3 figure
Identification and characterisation of Prp45p and Prp46p two novel pre-mRNA splicing factors in saccharomyces cerevisiae
One-Year Risk of Stroke after Transient Ischemic Attack or Minor Stroke
BACKGROUND Previous studies conducted between 1997 and 2003 estimated that the risk of stroke or an acute coronary syndrome was 12 to 20% during the first 3 months after a transient ischemic attack (TIA) or minor stroke. The TIAregistry.org project was designed to describe the contemporary profile, etiologic factors, and outcomes in patients with a TIA or minor ischemic stroke who receive care in health systems that now offer urgent evaluation by stroke specialists.
METHODS We recruited patients who had had a TIA or minor stroke within the previous 7 days. Sites were selected if they had systems dedicated to urgent evaluation of patients with TIA. We estimated the 1-year risk of stroke and of the composite outcome of stroke, an acute coronary syndrome, or death from cardiovascular causes. We also examined the association of the ABCD2 score for the risk of stroke (range, 0 [lowest risk] to 7 [highest risk]), findings on brain imaging, and cause of TIA or minor stroke with the risk of recurrent stroke over a period of 1 year.
RESULTS From 2009 through 2011, we enrolled 4789 patients at 61 sites in 21 countries. A total of 78.4% of the patients were evaluated by stroke specialists within 24 hours after symptom onset. A total of 33.4% of the patients had an acute brain infarction, 23.2% had at least one extracranial or intracranial stenosis of 50% or more, and 10.4% had atrial fibrillation. The Kaplan–Meier estimate of the 1-year event rate of the composite cardiovascular outcome was 6.2% (95% confidence interval, 5.5 to 7.0). Kaplan–Meier estimates of the stroke rate at days 2, 7, 30, 90, and 365 were 1.5%, 2.1%, 2.8%, 3.7%, and 5.1%, respectively. In multivariable analyses, multiple infarctions on brain imaging, large-artery atherosclerosis, and an ABCD2 score of 6 or 7 were each associated with more than a doubling of the risk of stroke.
CONCLUSIONS We observed a lower risk of cardiovascular events after TIA than previously reported. The ABCD2 score, findings on brain imaging, and status with respect to large-artery atherosclerosis helped stratify the risk of recurrent stroke within 1 year after a TIA or minor stroke. (Funded by Sanofi and Bristol-Myers Squibb.)Supported by an unrestricted grant from Sanofi and Bristol-Myers Squibb
- …
