40 research outputs found
Towards many colors in FISH on 3D-preserved interphase nuclei
The article reviews the existing methods of multicolor FISH on nuclear targets, first of all, interphase chromosomes. FISH proper and image acquisition are considered as two related components of a single process. We discuss (1) M-FISH (combinatorial labeling + deconvolution + widefield microscopy); (2) multicolor labeling + SIM (structured illumination microscopy); (3) the standard approach to multicolor FISH + CLSM (confocal laser scanning microscopy; one fluorochrome - one color channel); (4) combinatorial labeling + CLSM; (5) non-combinatorial labeling + CLSM + linear unmixing. Two related issues, deconvolution of images acquired with CLSM and correction of data for chromatic Z-shift, are also discussed. All methods are illustrated with practical examples. Finally, several rules of thumb helping to choose an optimal labeling + microscopy combination for the planned experiment are suggested. Copyright (c) 2006 S. Karger AG, Basel
Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates
Here we report on the experimental investigation of thermally induced
fluctuations of the relative phase between two Bose-Einstein condensates which
are coupled via tunneling. The experimental control over the coupling strength
and the temperature of the thermal background allows for the quantitative
analysis of the phase fluctuations. Furthermore, we demonstrate the application
of these measurements for thermometry in a regime where standard methods fail.
With this we confirm that the heat capacity of an ideal Bose gas deviates from
that of a classical gas as predicted by the third law of thermodynamics.Comment: 4 pages, 4 figure
Observation of nonlinear tunneling of a Bose-Einstein condensate in a single Josephson junction
In this thesis, I present the first experimental implementation of a Josephson junction for Bose-Einstein condensates. The weak link between two BECs constitutes the nonlinear generalization of the well known Josephson junction of weakly-coupled superconductors that are separated by a thin insulating barrier. In our experiment, the required overlap of two macroscopic wavefunctions is provided by loading a BEC into an optical double well potential. It is realized by a superposition of a one-dimensional optical lattice with a focused laser beam optical dipole trap. The tunneling dynamics between the two potential wells exhibits two distinct dynamical regimes. For small initial population imbalances of the two wells we observe nearly sinusoidal Josephson tunneling oscillations, which are characterized by an oscillating population and relative phase. The situation changes drastically, if the initial population imbalance is chosen above a critical value. In this case, resonant tunneling between the two wells is prohibited because the difference between the on-site particle interaction energies in the two wells exceeds the tunneling energy splitting. As a consequence, the atomic distribution becomes self-locked and the relative phase evolves unbound in time. This regime of prohibited tunneling, which has no analogon in superconducting Josephson junctions, is called “macroscopic quantum self-trapping”
Untersuchungen von optischen Scansystemen zur geometrischen Erfassung von Unterwasserstrukturen
Dieser Beitrag beschäftigt sich mit optischen Erfassungs- und Scansystemen für den Bereich unter Wasser. Dabei wurde eine Einteilung in photogrammetrische, trigonometrische und impulsbasierte Systeme vorgenommen. Es wurden Messungen mit verschiedenen Systemen im Schleppkanal des Lehrstuhls für Strömungstechnik der Universität Rostock durchgeführt. Stellvertretend für photogrammetrische Erfassungssysteme kam das Stereokamerasystem vom Fraunhofer-Institut für Graphische Datenverarbeitung zum Einsatz. Das ULS-200-Scansystem von 2GRobotics und das SeaVision- Lasersystem von Kraken Robotik standen stellvertretend für trigonometrische Scansysteme zur Verfügung. Ein impulsbasiertes Scansystem stand für die Untersuchungen nicht bereit. Zusätzlich wurde das SeaVision-Scansystem in der Ostsee nahe des künstlichen Riffs bei Nienhagen unter realistischen Bedingungen getestet. Die Messungen spiegeln das derzeitige Potenzial optischer Messsysteme für den Bereich unter Wasser wider. Vor- und Nachteile der Systeme werden diskutiert
Developing technological synergies between deep-sea and space research
Recent advances in robotic design, autonomy and sensor integration create solutions for the exploration of deep-sea environments, transferable to the oceans of icy moons. Marine platforms do not yet have the mission autonomy capacity of their space counterparts (e.g., the state of the art Mars Perseverance rover mission), although different levels of autonomous navigation and mapping, as well as sampling, are an extant capability. In this setting their increasingly biomimicked designs may allow access to complex environmental scenarios, with novel, highly-integrated life-detecting, oceanographic and geochemical sensor packages. Here, we lay an outlook for the upcoming advances in deep-sea robotics through synergies with space technologies within three major research areas: biomimetic structure and propulsion (including power storage and generation), artificial intelligence and cooperative networks, and life-detecting instrument design. New morphological and material designs, with miniaturized and more diffuse sensor packages, will advance robotic sensing systems. Artificial intelligence algorithms controlling navigation and communications will allow the further development of the behavioral biomimicking by cooperating networks. Solutions will have to be tested within infrastructural networks of cabled observatories, neutrino telescopes, and off-shore industry sites with agendas and modalities that are beyond the scope of our work, but could draw inspiration on the proposed examples for the operational combination of fixed and mobile platforms
Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci
Background: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results: We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an `autosomal Barr body' with less compacted chromatin and incomplete RNAP II exclusion. Conclusions: 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi
Onchocerciasis (river blindness) – more than a century of research and control
This review summarises more than a century of research on onchocerciasis, also known as river blindness, and its control. River blindness is an infection caused by the tissue filaria Onchocerca volvulus affecting the skin, subcutaneous tissue and eyes and leading to blindness in a minority of infected persons. The parasite is transmitted by its intermediate hosts Simulium spp. which breed in rivers. Featured are history and milestones in onchocerciasis research and control, state-of-the-art data on the parasite, its endobacteria Wolbachia, on the vectors, previous and current prevalence of the infection, its diagnostics, the interaction between the parasite and its host, immune responses and the pathology of onchocerciasis. Detailed information is documented on the time course of control programmes in the afflicted countries in Africa and the Americas, a long road from previous programmes to current successes in control of the transmission of this infectious disease. By development, adjustment and optimization of the control measures, transmission by the vector has been interrupted in foci of countries in the Americas, in Uganda, in Sudan and elsewhere, followed by onchocerciasis eliminations. The current state and future perspectives for control, elimination and eradication within the next 20–30 years are described and discussed. This review contributes to a deeper comprehension of this disease by a tissue-dwelling filaria and it will be helpful in efforts to control and eliminate other filarial infections
