1,855 research outputs found
Electron Transfer-oxy Radical Mechanism for Anti-cancer Agents: 9-anilinoacridines
A possible mode of action involving electron transfer is advanced for the 9- anilinoacridines. The mechanism entails formation of toxic oxy radicals which destroy the neoplasm. Cyclic voltammetry was performed on iminium type ions derived by protonation of the acridines. Reductions were generally reversible with potentials of about - 0.60 V. Involvement of quinoidal metabolites is also a possibility. The relationship of electrochemical behavior to structure and physiological activity is addressed
Footstep and Motion Planning in Semi-unstructured Environments Using Randomized Possibility Graphs
Traversing environments with arbitrary obstacles poses significant challenges
for bipedal robots. In some cases, whole body motions may be necessary to
maneuver around an obstacle, but most existing footstep planners can only
select from a discrete set of predetermined footstep actions; they are unable
to utilize the continuum of whole body motion that is truly available to the
robot platform. Existing motion planners that can utilize whole body motion
tend to struggle with the complexity of large-scale problems. We introduce a
planning method, called the "Randomized Possibility Graph", which uses
high-level approximations of constraint manifolds to rapidly explore the
"possibility" of actions, thereby allowing lower-level motion planners to be
utilized more efficiently. We demonstrate simulations of the method working in
a variety of semi-unstructured environments. In this context,
"semi-unstructured" means the walkable terrain is flat and even, but there are
arbitrary 3D obstacles throughout the environment which may need to be stepped
over or maneuvered around using whole body motions.Comment: Accepted by IEEE International Conference on Robotics and Automation
201
Anti-cancer Action of Metal Complexes: Electron Transfer and Oxidative Stress?
Evidence is presented in support of an electron transfer mechanism for various metal complexes possessing anti-neoplastic properties. Cyclic voltammetry was performed on several metallocenes, bis(acetato)bis(imidazole)Cu(II), and coordination compounds (Cu or Fe) of the anti-tumor agents, bipyridine, phenanthroline, hydroxyurea, diethyldithiocarbamate, and α, α1-bis(8-hydroxyquinolin-7-yl)-4-methoxytoluene. The favorable reduction potentials ranged from +0.5 to -0.5 V. Electrochemical behavior is correlated in some cases with structure and physiological activity. Relevant literature data are discussed
Charge Transfer-oxy Radical Mechanism for Anti-cancer Agents
The proposal is advanced that anti-cancer drugs generally function by charge transfer resulting in formation of toxic oxy radicals which destroy the neoplasm. Electrochemical studies were performed with some of the main types of agents: iminium ions (adenine iminium from alkylating species, iminium metabolite of 6-mercaptopurine, nitidine, other polynuclear iminiums) and metal complexes (Pt(II)diaquodiammine-guanosine, copper salicylaldoximes). Reduction potentials ranged from -0.4 to -1.2 V. Literature data for quinones are presented and radiation is discussed. Based on the theoretical framework, a rationale is offered for the carcinogen-anti-cancer paradox and the role of antioxidants
Probabilistic Completeness of Randomized Possibility Graphs Applied to Bipedal Walking in Semi-unstructured Environments
We present a theoretical analysis of a recent whole body motion planning method, the Randomized Possibility Graph, which uses a high-level decomposition of the feasibility constraint manifold in order to rapidly find routes that may lead to a solution. These routes are then examined by lower-level planners to determine feasibility. In this paper, we show that this approach is probabilistically complete for bipedal robots performing quasi-static walking in "semi-unstructured" environments. Furthermore, we show that the decomposition into higher and lower level planners allows for a considerably higher rate of convergence in the probability of finding a solution when one exists. We illustrate this improved convergence with a series of simulated scenarios
Fermentation of Cottonseed and Other Feedstuffs in Cattle Rumen Fluid
Bovine rumen fluid was fermented anaerobically over 48 h with cottonseed, corn, alfalfa, or a mixture of these substrates in anaerobic mineral buffer. Samples taken at different incubation times were derivatized with n-butanol and subjected to gas chromatography and mass spectroscopy. No unusual fermentation end-products from the cottonseed substrate were detected. Cottonseed supported rumen fermentation at levels comparable to those of the other substrates. Major components were usually found in the decreasing order of acetate, propionate, butyrate, and valerate, although acetate and propionate concentrations decreased late in the alfalfa and mixed-feed fermentations, eventually allowing butyrate concentrations to exceed those of propionate. As expected, lactate was produced in high concentrations when corn was fermented. The minor components 2-methylpropionate, 2- and 3-methylbutyrate, phenylacetate, phenylpropionate, and caproate also accumulated, with their relative concentrations varying with the substrate. Succinate was produced in substantial amounts only when corn and alfalfa were fermented; it did not accumulate when cottonseed was the substrate. Samples containing cottonseed were derivatized and subjected to reversed-phase high-performance liquid chromatography, revealing that gossypol concentrations did not change during fermentation
Traversing Environments Using Possibility Graphs for Humanoid Robots
Locomotion for legged robots poses considerable challenges when confronted by obstacles and adverse environments. Footstep planners are typically only designed for one mode of locomotion, but traversing unfavorable environments may require several forms of locomotion to be sequenced together, such as walking, crawling, and jumping. Multi-modal motion planners can be used to address some of these problems, but existing implementations tend to be time-consuming and are limited to quasi-static actions. This paper presents a motion planning method to traverse complex environments using multiple categories of actions. We introduce the concept of the "Possibility Graph", which uses high-level approximations of constraint manifolds to rapidly explore the "possibility" of actions, thereby allowing lower-level single-action motion planners to be utilized more efficiently. We show that the Possibility Graph can quickly find paths through several different challenging environments which require various combinations of actions in order to traverse
Kepler Eclipsing Binary Stars. II. 2165 Eclipsing Binaries in the Second Data Release
The Kepler Mission provides nearly continuous monitoring of ~156 000 objects
with unprecedented photometric precision. Coincident with the first data
release, we presented a catalog of 1879 eclipsing binary systems identified
within the 115 square degree Kepler FOV. Here, we provide an updated catalog
augmented with the second Kepler data release which increases the baseline
nearly 4-fold to 125 days. 386 new systems have been added, ephemerides and
principle parameters have been recomputed. We have removed 42 previously
cataloged systems that are now clearly recognized as short-period pulsating
variables and another 58 blended systems where we have determined that the
Kepler target object is not itself the eclipsing binary. A number of
interesting objects are identified. We present several exemplary cases: 4 EBs
that exhibit extra (tertiary) eclipse events; and 8 systems that show clear
eclipse timing variations indicative of the presence of additional bodies bound
in the system. We have updated the period and galactic latitude distribution
diagrams. With these changes, the total number of identified eclipsing binary
systems in the Kepler field-of-view has increased to 2165, 1.4% of the Kepler
target stars.Comment: 29 pages, 12 figures. Submitted to the AJ. An online version of the
catalog is maintained at http://keplerEBs.villanova.edu
The Health Impact of Symptomatic Adult Spinal Deformity: Comparison of Deformity Types to United States Population Norms and Chronic Diseases.
Study designA retrospective analysis of a prospective, multicenter database.ObjectiveThe aim of this study was to evaluate the health impact of symptomatic adult spinal deformity (SASD) by comparing Standard Form Version 2 (SF-36) scores for SASD with United States normative and chronic disease values.Summary of background dataRecent data have identified radiographic parameters correlating with poor health-related quality of life for SASD. Disability comparisons between SASD patients and patients with chronic diseases may provide further insight to the disease burden caused by SASD.MethodsConsecutive SASD patients, with no history of spine surgery, were enrolled into a multicenter database and evaluated for type and severity of spinal deformity. Baseline SF-36 physical component summary (PCS) and mental component summary (MCS) values for SASD patients were compared with reported U.S. normative and chronic disease SF-36 scores. SF-36 scores were reported as normative-based scores (NBS) and evaluated for minimally clinical important difference (MCID).ResultsBetween 2008 and 2011, 497 SASD patients were prospectively enrolled and evaluated. Mean PCS for all SASD was lower than U.S. total population (ASD = 40.9; US = 50; P < 0.05). Generational decline in PCS for SASD patients with no other reported comorbidities was more rapid than U.S. norms (P < 0.05). PCS worsened with lumbar scoliosis and increasing sagittal vertical axis (SVA). PCS scores for patients with isolated thoracic scoliosis were similar to values reported by individuals with chronic back pain (45.5 vs 45.7, respectively; P > 0.05), whereas patients with lumbar scoliosis combined with severe sagittal malalignment (SVA >10 cm) demonstrated worse PCS scores than values reported by patients with limited use of arms and legs (24.7 vs 29.1, respectively; P < 0.05).ConclusionsSASD is a heterogeneous condition that, depending upon the type and severity of the deformity, can have a debilitating impact on health often exceeding the disability of more recognized chronic diseases. Health care providers must be aware of the types of SASD that correlate with disability to facilitate appropriate diagnosis, treatment, and research efforts.Level of evidence3
- …
