13 research outputs found

    Influence of the Blue Coral Heliopora coerulea on Scleractinian Coral Larval Recruitment

    Get PDF
    The octocoral Heliopora coerulea has emerged as one of the most dominant reef-building corals in the Bolinao Reef Complex, northern Philippines. One of the possible mechanisms that may contribute to the success of H. coerulea over scleractinian corals is its ability to compete effectively for space on the reef by inhibiting the settlement of coral larvae in its immediate vicinity. To determine whether H. coerulea can indeed inhibit larval recruitment, settlement tiles were deployed inside H. coerulea aggregations or on hard substrate at a distance of about 2 to 3 meters away. After three months of deployment, only a single H. coerulea recruit was observed on tiles placed within aggregations whereas many different coral recruits were observed on tiles placed on substrate away from the blue coral. These results suggest that adult H. coerulea can inhibit the settlement of scleractinian larvae. This effect may be mediated by various mechanisms, such as the production of allelopathic compounds, deployment of mesenterial filaments, and sweeper tentacles. However, further studies are needed to determine the modes of competition that are used by the coral

    Warm seawater temperature promotes substrate colonization by the blue coral, Heliopora coerulea

    Get PDF
    Background: Heliopora coerulea, the blue coral, is a reef building octocoral that is reported to have a higher optimum temperature for growth compared to most scleractinian corals. This octocoral has been observed to grow over both live and dead scleractinians and to dominate certain reefs in the Indo-Pacific region. The molecular mechanisms underlying the ability of H. coerulea to tolerate warmer seawater temperatures and to effectively compete for space on the substrate remain to be elucidated. Methods: In this study, we subjected H. coerulea colonies to various temperatures for up to 3 weeks. The growth and photosynthetic efficiency rates of the coral colonies were measured. We then conducted pairwise comparisons of gene expression among the different coral tissue regions to identify genes and pathways that are expressed under different temperature conditions. Results: A horizontal growth rate of 1.13 +/- 0.25 mm per week was observed for corals subjected to 28 or 31 degrees C. This growth rate was significantly higher compared to corals exposed at 26 degrees C. This new growth was characterized by the extension of whitish tissue at the edges of the colony and was enriched for a matrix metallopeptidase, a calcium and integrin binding protein, and other transcripts with unknown function. Tissues at the growth margin and the adjacent calcified encrusting region were enriched for transcripts related to proline and riboflavin metabolism, nitrogen utilization, and organic cation transport. The calcified digitate regions, on the other hand, were enriched for transcripts encoding proteins involved in cell-matrix adhesion, translation, receptor-mediated endocytosis, photosynthesis, and ion transport. Functions related to lipid biosynthesis, extracellular matrix formation, cell migration, and oxidation-reduction processes were enriched at the growth margin in corals subjected for 3 weeks to 28 or 31 degrees C relative to corals at 26 degrees C. In the digitate region of the coral, transcripts encoding proteins that protect against oxidative stress, modify cell membrane composition, and mediate intercellular signaling pathways were enriched after just 24 h of exposure to 31 degrees C compared to corals at 28 degrees C. The overall downregulation of gene expression observed after 3 weeks of sustained exposure to 31 degrees C is likely compensated by symbiont metabolism. Discussion: These findings reveal that the different regions of H. coerulea have variable gene expression profiles and responses to temperature variation. Under warmer conditions, the blue coral invests cellular resources toward extracellular matrix formation and cellular migration at the colony margins, which may promote rapid tissue growth and extension. This mechanism enables the coral to colonize adjacent reef substrates and successfully overgrow slower growing scleractinian corals that may already be more vulnerable to warming ocean waters

    Influence of the Blue Coral Heliopora coerulea

    Get PDF
    The octocoral Heliopora coerulea has emerged as one of the most dominant reef-building corals in the Bolinao Reef Complex, northern Philippines. One of the possible mechanisms that may contribute to the success of H. coerulea over scleractinian corals is its ability to compete effectively for space on the reef by inhibiting the settlement of coral larvae in its immediate vicinity. To determine whether H. coerulea can indeed inhibit larval recruitment, settlement tiles were deployed inside H. coerulea aggregations or on hard substrate at a distance of about 2 to 3 meters away. After three months of deployment, only a single H. coerulea recruit was observed on tiles placed within aggregations whereas many different coral recruits were observed on tiles placed on substrate away from the blue coral. These results suggest that adult H. coerulea can inhibit the settlement of scleractinian larvae. This effect may be mediated by various mechanisms, such as the production of allelopathic compounds, deployment of mesenterial filaments, and sweeper tentacles. However, further studies are needed to determine the modes of competition that are used by the coral

    Ensuring Aquatic Food Security in the Philippines

    Get PDF
    The human population of the Philippines is expected to reach 158 million by the year 2050, or an increase of 37% relative to 2022. This implies increased demand for aquatic food (or “fish” hereafter). This begs the question of whether the Philippines can meet the expected increase in fish demand. We estimate that even if the Philippines can maintain its current fish production, the Philippines will still require 1.67 million metric tons more fish per year by 2050 to at least maintain its current per capita fish consumption of 34.27 kg per year. Continued mismanagement of inland and marine fisheries will further widen the gap in fish supply. However, we argue that simultaneously rebuilding overfished fisheries, restoring degraded habitats crucial to supporting productive fisheries, addressing current threats to fisheries sustainability, and expanding sustainable marine aquaculture (or mariculture) have the potential to meet future fish demand in the Philippines. Sustainably expanding mariculture requires careful siting and management of mariculture development areas so that mariculture can improve food security without disenfranchising and marginalizing local coastal communities

    Siting marine protected areas based on habitat quality and extent provides the greatest benefit to spatially structured metapopulations

    Get PDF
    Connectivity and its role in the persistence and sustainability of marine metapopulations are attracting increased attention from the scientific community and coastal resource managers. Whether protection should prioritize the connectivity structure or demographic characteristics of a given patch is still unclear. We design a three-stage population model to analyze the relative importance of sources, sinks, quality and extent of juvenile and adult habitat, and node centralities (eigenvector, degree, closeness, and betweenness) as a basis for prioritizing sites. We use a logistic-type stage-structured model to describe the local dynamics of a population with a sessile adult stage and network models to elucidate propagule-exchange dynamics. Our results show that the coupled states of habitat extent and quality, which determine population carrying capacity, are good criteria for protection strategy. Protecting sites on the basis of sources, sinks, or other centrality measures of connectivity becomes optimal only in limited situations, that is, when larval production is not dependent on the adult population. Our findings are robust to a diverse set of larval pathway structures and levels of larval retention, which indicates that the network topology may not be as important as carrying capacity in determining the fate of the metapopulation. Protecting extensive, good quality habitat can help achieve both conservation and fisheries objectives

    Warm seawater temperature promotes substrate colonization by the blue coral, <i>Heliopora coerulea</i>

    No full text
    Background Heliopora coerulea, the blue coral, is a reef building octocoral that is reported to have a higher optimum temperature for growth compared to most scleractinian corals. This octocoral has been observed to grow over both live and dead scleractinians and to dominate certain reefs in the Indo-Pacific region. The molecular mechanisms underlying the ability of H. coerulea to tolerate warmer seawater temperatures and to effectively compete for space on the substrate remain to be elucidated. Methods In this study, we subjected H. coerulea colonies to various temperatures for up to 3 weeks. The growth and photosynthetic efficiency rates of the coral colonies were measured. We then conducted pairwise comparisons of gene expression among the different coral tissue regions to identify genes and pathways that are expressed under different temperature conditions. Results A horizontal growth rate of 1.13 ± 0.25 mm per week was observed for corals subjected to 28 or 31 °C. This growth rate was significantly higher compared to corals exposed at 26 °C. This new growth was characterized by the extension of whitish tissue at the edges of the colony and was enriched for a matrix metallopeptidase, a calcium and integrin binding protein, and other transcripts with unknown function. Tissues at the growth margin and the adjacent calcified encrusting region were enriched for transcripts related to proline and riboflavin metabolism, nitrogen utilization, and organic cation transport. The calcified digitate regions, on the other hand, were enriched for transcripts encoding proteins involved in cell-matrix adhesion, translation, receptor-mediated endocytosis, photosynthesis, and ion transport. Functions related to lipid biosynthesis, extracellular matrix formation, cell migration, and oxidation-reduction processes were enriched at the growth margin in corals subjected for 3 weeks to 28 or 31 °C relative to corals at 26 °C. In the digitate region of the coral, transcripts encoding proteins that protect against oxidative stress, modify cell membrane composition, and mediate intercellular signaling pathways were enriched after just 24 h of exposure to 31 °C compared to corals at 28 °C. The overall downregulation of gene expression observed after 3 weeks of sustained exposure to 31 °C is likely compensated by symbiont metabolism. Discussion These findings reveal that the different regions of H. coerulea have variable gene expression profiles and responses to temperature variation. Under warmer conditions, the blue coral invests cellular resources toward extracellular matrix formation and cellular migration at the colony margins, which may promote rapid tissue growth and extension. This mechanism enables the coral to colonize adjacent reef substrates and successfully overgrow slower growing scleractinian corals that may already be more vulnerable to warming ocean waters. </jats:sec

    Through the Boundaries: Environmental Factors Affecting Reef Benthic Cover in Marine Protected Areas in the Philippines

    No full text
    Philippine coral reefs have been on the decline since the 1970s, and this degradation has posed a risk to biodiversity, food security, and livelihood in the country. In an effort to arrest this degradation, marine protected areas (MPAs) were established across the country. MPAs are known to improve fish biomass, but their effect on live coral cover and other benthos is not yet well documented and understood. In this study, 28 MPAs across the Philippines were surveyed comparing benthic cover and indices between protected reefs and adjacent unprotected reefs. No consistent differences were found between reefs inside and outside MPAs through all the benthic categories and reef health indices considered that are indicative of protection effects or recovery within MPAs. However, there were notable site-specific differences in benthic cover across the study MPAs-suggesting that factors other than protection play important roles in influencing benthic cover inside and outside of MPAs. Storm frequency and proximity to rivers, as a proxy for siltation, were the strongest negative correlates to live coral cover. Also, high coastal population, a proxy for pollution, and occurrence of blast and poison fishing positively correlated with high dead coral cover. The lack of significant difference in benthic cover between reefs inside and outside MPAs suggests that protection does not necessarily guarantee immediate improvement in benthic condition. Correlations between benthic condition and storm frequency, siltation, and pollution suggest that it is necessary to augment MPAs with other management strategies that will address the multiple stressors that are usually indiscriminate of MPA boundaries. Supplementing long-term and systematic monitoring of benthic cover and biodiversity inside and outside of MPAs with data on other important environmental and human impact variables will help improve understanding of benthic cover and biodiversity dynamics inside and outside of MPA boundaries.</jats:p
    corecore