10,054 research outputs found
Candidate molecular ions for an electron electric dipole moment experiment
This paper is a theoretical work in support of a newly proposed experiment
(R. Stutz and E. Cornell, Bull. Am. Soc. Phys. 89, 76 2004) that promises
greater sensitivity to measurements of the electron's electric dipole moment
(EDM) based on the trapping of molecular ions. Such an experiment requires the
choice of a suitable molecule that is both experimentally feasible and
possesses an expectation of a reasonable EDM signal. We find that the molecular
ions PtH+, HfH+, and HfF+ are suitable candidates in their low-lying triplet
Delta states. In particular, we anticipate that the effective electric fields
generated inside these molecules are approximately of 73 GV/cm, -17 GV/cm, and
-18 GV/cm respectively. As a byproduct of this discussion, we also explain how
to make estimates of the size of the effective electric field acting in a
molecule, using commercially available, nonrelativistic molecular structure
software.Comment: 25 pages, 3 figures, submitted to Physical Review
Two-Dimensional Topology of the 2dF Galaxy Redshift Survey
We study the topology of the publicly available data released by the 2dFGRS.
The 2dFGRS data contains over 100,000 galaxy redshifts with a magnitude limit
of b_J=19.45 and is the largest such survey to date. The data lie over a wide
range of right ascension (75 degree strips) but only within a narrow range of
declination (10 degree and 15 degree strips). This allows measurements of the
two-dimensional genus to be made.
The NGP displays a slight meatball shift topology, whereas the SGP displays a
bubble like topology. The current SGP data also have a slightly higher genus
amplitude. In both cases, a slight excess of overdense regions are found over
underdense regions. We assess the significance of these features using mock
catalogs drawn from the Virgo Consortium's Hubble Volume LCDM z=0 simulation.
We find that differences between the NGP and SGP genus curves are only
significant at the 1 sigma level. The average genus curve of the 2dFGRS agrees
well with that extracted from the LCDM mock catalogs.
We compare the amplitude of the 2dFGRS genus curve to the amplitude of a
Gaussian random field with the same power spectrum as the 2dFGRS and find,
contradictory to results for the 3D genus of other samples, that the amplitude
of the GRF genus curve is slightly lower than that of the 2dFGRS. This could be
due to a a feature in the current data set or the 2D genus may not be as
sensitive as the 3D genus to non-linear clustering due to the averaging over
the thickness of the slice in 2D. (Abridged)Comment: Submitted to ApJ A version with Figure 1 in higher resolution can be
obtained from http://www.physics.drexel.edu/~hoyle
Safety Recommendations for Evaluation and Surgery of the Head and Neck During the COVID-19 Pandemic
Importance The rapidly expanding novel coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2, has challenged the medical community to an unprecedented degree. Physicians and health care workers are at added risk of exposure and infection during the course of patient care. Because of the rapid spread of this disease through respiratory droplets, health care workers who come in close contact with the upper aerodigestive tract during diagnostic and therapeutic procedures, such as otolaryngologists–head and neck surgeons, are particularly at risk. A set of safety recommendations was created based on a review of the literature and communications with physicians with firsthand knowledge of safety procedures during the COVID-19 pandemic.
Observations A high number of health care workers were infected during the first phase of the pandemic in the city of Wuhan, China. Subsequently, by adopting strict safety precautions, other regions were able to achieve high levels of safety for health care workers without jeopardizing the care of patients. The most common procedures related to the examination and treatment of upper aerodigestive tract diseases were reviewed. Each category was reviewed based on the potential risk imposed to health care workers. Specific recommendations were made based on the literature, when available, or consensus best practices. Specific safety recommendations were made for performing tracheostomy in patients with COVID-19.
Conclusions and Relevance Preserving a highly skilled health care workforce is a top priority for any community and health care system. Based on the experience of health care systems in Asia and Europe, by following strict safety guidelines, the risk of exposure and infection of health care workers could be greatly reduced while providing high levels of care. The provided recommendations, which may evolve over time, could be used as broad guidance for all health care workers who are involved in the care of patients with COVID-19
Association Between Chronic Hepatitis C Virus Infection and Myocardial Infarction Among People Living With HIV in the United States.
Hepatitis C virus (HCV) infection is common among people living with human immunodeficiency virus (PLWH). Extrahepatic manifestations of HCV, including myocardial infarction (MI), are a topic of active research. MI is classified into types, predominantly atheroembolic type 1 MI (T1MI) and supply-demand mismatch type 2 MI (T2MI). We examined the association between HCV and MI among patients in the Centers for AIDS Research (CFAR) Network of Integrated Clinical Systems, a US multicenter clinical cohort of PLWH. MIs were centrally adjudicated and categorized by type using the Third Universal Definition of Myocardial Infarction. We estimated the association between chronic HCV (RNA+) and time to MI while adjusting for demographic characteristics, cardiovascular risk factors, clinical characteristics, and history of injecting drug use. Among 23,407 PLWH aged ≥18 years, there were 336 T1MIs and 330 T2MIs during a median of 4.7 years of follow-up between 1998 and 2016. HCV was associated with a 46% greater risk of T2MI (adjusted hazard ratio (aHR) = 1.46, 95% confidence interval (CI): 1.09, 1.97) but not T1MI (aHR = 0.87, 95% CI: 0.58, 1.29). In an exploratory cause-specific analysis of T2MI, HCV was associated with a 2-fold greater risk of T2MI attributed to sepsis (aHR = 2.01, 95% CI: 1.25, 3.24). Extrahepatic manifestations of HCV in this high-risk population are an important area for continued research
Transcriptomes of parents identify parenting strategies and sexual conflict in a subsocial beetle
This work was funded by UK NERC grants to M.G.R. and A.J.M. an NERC studentship to D.J.P. the University of Georgia and a US NSF grant to A.J.M. and M.G.R.Parenting in the burying beetle Nicrophorus vespilloides is complex and, unusually, the sex and number of parents that can be present is flexible. Such flexibility is expected to involve specialized behaviour by the two sexes under biparental conditions. Here, we show that offspring fare equally well regardless of the sex or number of parents present. Comparing transcriptomes, we find a largely overlapping set of differentially expressed genes in both uniparental and biparental females and in uniparental males including vitellogenin, associated with reproduction, and takeout, influencing sex-specific mating and feeding behaviour. Gene expression in biparental males is similar to that in non-caring states. Thus, being ‘biparental’ in N. vespilloides describes the family social organization rather than the number of directly parenting individuals. There was no specialization; instead, in biparental families, direct male parental care appears to be limited with female behaviour unchanged. This should lead to strong sexual conflict.Publisher PDFPeer reviewe
Measurement of gut permeability using fluorescent tracer agent technology
Abstract The healthy gut restricts macromolecular and bacterial movement across tight junctions, while increased intestinal permeability accompanies many intestinal disorders. Dual sugar absorption tests, which measure intestinal permeability in humans, present challenges. Therefore, we asked if enterally administered fluorescent tracers could ascertain mucosal integrity, because transcutaneous measurement of differentially absorbed molecules could enable specimen-free evaluation of permeability. We induced small bowel injury in rats using high- (15 mg/kg), intermediate- (10 mg/kg), and low- (5 mg/kg) dose indomethacin. Then, we compared urinary ratios of enterally administered fluorescent tracers MB-402 and MB-301 to urinary ratios of sugar tracers lactulose and rhamnose. We also tested the ability of transcutaneous sensors to measure the ratios of absorbed fluorophores. Urinary fluorophore and sugar ratios reflect gut injury in an indomethacin dose dependent manner. The fluorophores generated smooth curvilinear ratio trajectories with wide dynamic ranges. The more chaotic sugar ratios had narrower dynamic ranges. Fluorophore ratios measured through the skin distinguished indomethacin-challenged from same day control rats. Enterally administered fluorophores can identify intestinal injury in a rat model. Fluorophore ratios are measureable through the skin, obviating drawbacks of dual sugar absorption tests. Pending validation, this technology should be considered for human use
Topology of structure in the Sloan Digital Sky Survey: model testing
We measure the three-dimensional topology of large-scale structure in the
Sloan Digital Sky Survey (SDSS). This allows the genus statistic to be measured
with unprecedented statistical accuracy. The sample size is now sufficiently
large to allow the topology to be an important tool for testing galaxy
formation models. For comparison, we make mock SDSS samples using several
state-of-the-art N-body simulations: the Millennium run of Springel et al.
(2005)(10 billion particles), Kim & Park (2006) CDM models (1.1 billion
particles), and Cen & Ostriker (2006) hydrodynamic code models (8.6 billion
cell hydro mesh). Each of these simulations uses a different method for
modeling galaxy formation. The SDSS data show a genus curve that is broadly
characteristic of that produced by Gaussian random phase initial conditions.
Thus the data strongly support the standard model of inflation where Gaussian
random phase initial conditions are produced by random quantum fluctuations in
the early universe. But on top of this general shape there are measurable
differences produced by non-linear gravitational effects (cf. Matsubara 1994),
and biasing connected with galaxy formation. The N-body simulations have been
tuned to reproduce the power spectrum and multiplicity function but not
topology, so topology is an acid test for these models. The data show a
``meatball'' shift (only partly due to the Sloan Great Wall of Galaxies; this
shift also appears in a sub-sample not containing the Wall) which differs at
the 2.5\sigma level from the results of the Millennium run and the Kim & Park
dark halo models, even including the effects of cosmic variance.Comment: 13 Apj pages, 7 figures High-resolution stereo graphic available at
http://www.astro.princeton.edu/~dclayh/stereo50.ep
Engineering tyrosine-based electron flow pathways in proteins: The case of aplysia myoglobin
Tyrosine residues can act as redox cofactors that provide an electron transfer ("hole-hopping") route that enhances the rate of ferryl heme iron reduction by externally added reductants, for example, ascorbate. Aplysia fasciata myoglobin, having no naturally occurring tyrosines but 15 phenylalanines that can be selectively mutated to tyrosine residues, provides an ideal protein with which to study such through-protein electron transfer pathways and ways to manipulate them. Two surface exposed phenylalanines that are close to the heme have been mutated to tyrosines (F42Y, F98Y). In both of these, the rate of ferryl heme reduction increased by up to 3 orders of magnitude. This result cannot be explained in terms of distance or redox potential change between donor and acceptor but indicates that tyrosines, by virtue of their ability to form radicals, act as redox cofactors in a new pathway. The mechanism is discussed in terms of the Marcus theory and the specific protonation/deprotonation states of the oxoferryl iron and tyrosine. Tyrosine radicals have been observed and quantified by EPR spectroscopy in both mutants, consistent with the proposed mechanism. The location of each radical is unambiguous and allows us to validate theoretical methods that assign radical location on the basis of EPR hyperfine structure. Mutation to tyrosine decreases the lipid peroxidase activity of this myoglobin in the presence of low concentrations of reductant, and the possibility of decreasing the intrinsic toxicity of hemoglobin by introduction of these pathways is discussed. © 2012 American Chemical Society
I-Brane Inflow and Anomalous Couplings on D-Branes
We show that the anomalous couplings of -brane gauge and gravitational
fields to Ramond-Ramond tensor potentials can be deduced by a simple anomaly
inflow argument applied to intersecting -branes and use this to determine
the eight-form gravitational coupling.Comment: 8 pages, harvmac, no figure
- …
