324 research outputs found
The role of intravascular ultrasound in the treatment of chronic total occlusion with percutaneous coronary intervention
Chronic Total Occlusion (CTO): Scientific Benefit and Principal Interventional Approach
Chronic total occlusion (CTO) of coronary arteries are found in about 20% of patients undergoing percutaneous coronary intervention (PCI) and in about 50% of post-CABG patients. Specialized centers can now achieve success rates of over 85%, which is a result of technical advancements in retrograde techniques irrespective of the CTO anatomy. Due to the complexity of retrograde CTO-techniques, a consensus paper issued by the EuroCTO-Club requires interventional cardiologists to have sufficient experience in antegrade approaches (>300 antegrade CTO-cases, 50/year) with additional retrograde training (25 retrograde cases each as first and second operator) before becoming an independent retrograde operator. The increased investment in time and technical resources may only be justified if the patient has a clear clinical benefit. However, technical advancements and the clearer evidence that complete revascularization can be achieved in patients with coronary multivessel disease have attracted growing interest in recent years from interventional cardiologists in treating CTO. The chapter will review current knowledge in the interventional treatment of CTO and focuses on indications and the potential benefits for the individual patient being based on the current state of scientific evidence
Clinical outcomes associated with catecholamine use in patients diagnosed with Takotsubo cardiomyopathy
Background: Recent hypotheses have suggested the pathophysiological role of catecholamines in the evolution of the Takotsubo syndrome (TTS). The extent of cardiac and circulatory compromise dictates the use of some form of supportive therapy. This study was designed to investigate the clinical outcomes associated with catecholamine use in TTS patients.
Methods: Our institutional database constituted a collective of 114 patients diagnosed with TTS between 2003 and 2015. The study-patients were subsequently classified into two groups based on the need for catecholamine support during hospital stay (catecholamine group n = 93; 81%, non-catecholamine group = 21; 19%). The primary end-point of our study was all-cause mortality.
Results: Patients receiving catecholamine support showed higher grades of circulatory and cardiac compromise (left ventricular ejection fraction (LVEF) 39.6% vs. 32.7%, p-value < 0.01) and the course of disease was often complicated by the occurrence of different TTS-associated complications. The in-hospital mortality (3.2% vs. 28.5%, p < 0.01), 30-day mortality (17.2% vs. 51.4%, p < 0.01) as well as long-term mortality (38.7% vs. 80.9%, p < 0.01) was significantly higher in the group of patients receiving catecholamine support. A multivariate Cox regression analysis attributed EF ≤ 35% (HR 3.6, 95% CI 1.6–8.1; p < 0.01) and use of positive inotropic agents (HR 2.2, 95% CI 1.0–4.8; p 0.04) as independent predictors of the adverse outcome.
Conclusion: Rates of in-hospital events and short- as well as long-term mortality were significantly higher in TTS patients receiving catecholamine support as compared to the other study-patients. These results need further evaluation in pre-clinical and clinical trials to determine if external catecholamines contribute to an adverse clinical outcome already compromised by the initial insult
Ischemic biomarker heart-type fatty acid binding protein (hFABP) in acute heart failure - diagnostic and prognostic insights compared to NT-proBNP and troponin I
Background: To evaluate diagnostic and long-term prognostic values of hFABP compared to NT-proBNP and troponin I (TnI) in patients presenting to the emergency department (ED) suspected of acute heart failure (AHF). Methods: 401 patients with acute dyspnea or peripheral edema, 122 suffering from AHF, were prospectively enrolled and followed up to 5 years. hFABP combined with NT-proBNP versus NT-proBNP alone was tested for AHF diagnosis. Prognostic value of hFABP versus TnI was evaluated in models predicting all-cause mortality (ACM) and AHF related rehospitalization (AHF-RH) at 1 and 5 years, including 11 conventional risk factors plus NT-proBNP. Results: Additional hFABP measurements improved diagnostic specificity and positive predictive value (PPV) of sole NT-proBNP testing at the cutoff <300 ng/l to “rule out” AHF. Highest hFABP levels (4th quartile) were associated with increased ACM (hazard ratios (HR): 2.1–2.5; p = 0.04) and AHF-RH risk at 5 years (HR 2.8–8.3, p = 0.001). ACM was better characterized in prognostic models including TnI, whereas AHF-RH was better characterized in prognostic models including hFABP. Cox analyses revealed a 2 % increase of ACM risk and 3–7 % increase of AHF-RH risk at 5 years by each unit increase of hFABP of 10 ng/ml. Conclusions: Combining hFABP plus NT-proBNP (<300 ng/l) only improves diagnostic specificity and PPV to rule out AHF. hFABP may improve prognosis for long-term AHF-RH, whereas TnI may improve prognosis for ACM. Trial registration: ClinicalTrials.gov identifier: NCT00143793
- LAA Occluder View for post-implantation Evaluation (LOVE) - standardized imaging proposal evaluating implanted left atrial appendage occlusion devices by cardiac computed tomography
Background: A standardized imaging proposal evaluating implanted left atrial appendage (LAA) occlusion devices by cardiac computed tomography angiography (cCTA) has never been investigated. Methods: cCTA datasets were acquired on a 3rd generation dual-source CT system and reconstructed with a slice thickness of 0.5 mm. An interdisciplinary evaluation was performed by two interventional cardiologists and one radiologist on a 3D multi-planar workstation. A standardized multi-planar reconstruction algorithm was developed in order to assess relevant clinical aspects of implanted LAA occlusion devices being outlined within a pictorial essay. Results: The following clinical aspects of implanted LAA occlusion devices were evaluated within the most appropriate cCTA multi-planar reconstruction: (1) topography to neighboring structures, (2) peri-device leaks, (3) coverage of LAA lobes, (4) indirect signs of neo-endothelialization. These are illustrated within concise CT imaging examples emphasizing the potential value of the proposed cCTA imaging algorithm: Starting from anatomical cCTA planes and stepwise angulation planes perpendicular to the base of the LAA devices generates an optimal LAA Occluder View for post-implantation Evaluation (LOVE). Aligned true axial, sagittal and coronal LOVE planes offer a standardized and detailed evaluation of LAA occlusion devices after percutaneous implantation. Conclusions: This pictorial essay presents a standardized imaging proposal by cCTA using multi-planar reconstructions that enables systematical follow-up and comparison of patients after LAA occlusion device implantation
High sensitivity troponin T and I reflect mitral annular plane systolic excursion being assessed by cardiac magnetic resonance imaging
Purpose: This study aims to evaluate the association between high sensitivity troponins (hsTn) and mitral annular plane systolic excursion (MAPSE) in patients undergoing cardiac magnetic resonance imaging (cMRI).
Methods: Patients undergoing cMRI were prospectively enrolled. Patients with right ventricular dysfunction(< 50%) were excluded. Blood samples for measurements of hsTn and amino-terminal pro-brain natriuretic peptide (NT-proBNP) were collected at the time of cMRI.
Results: 84 patients were included. Median left ventricular ejection fraction was 59% (IQR 51–64%). HsTn were correlated inversely with MAPSE within multivariable linear regression models (hsTnI: Beta − 0.19; T − 1.96; p = 0.05; hsTnT: Beta − 0.26; T − 3.26; p = 0.002). HsTn increased significantly according to decreasing stages of impaired MAPSE
(p < 0.003). HsTn discriminated patients with impaired MAPSE < 11 mm (hsTnT: AUC = 0.67; p = 0.008; hsTnI: AUC = 0.64; p = 0.03) and < 8 mm (hsTnT: AUC = 0.79; p = 0.0001; hsTnI: AUC = 0.75; p = 0.001) and were still significantly associated in multivariable logistic regression models with impaired MAPSE < 11 mm (hsTnT: OR = 4.71; p = 0.002; hsTnI: OR = 4.22; p = 0.009). Conclusions: This study demonstrates that hsTn are able to reflect MAPSE being assessed by cMRI
Follow-up of iatrogenic aorto-coronary "Dunning" dissections by cardiac computed tomography imaging
Background: Iatrogenic aorto-coronary dissections following percutaneous coronary interventions (PCI) represent a rare but potentially life threatening complication. This restrospective and observational study aims to describe our in-house experience for timely diagnostics and therapy including cardiovascular imaging to follow-up securely high-risk patients with Dunning dissections.
Methods: Dunning dissections (DD) occurred during clinical routine PCIs, which were indicated according to current ESC guidelines. Diagnostic assessment, treatment and follow-up were based on coronary angiography with PCI or conservative treatment and cardiac computed tomography (cCTA) imaging.
Results: A total of eight patients with iatrogenic DD were included. Median age was 69 years (IQR 65.8–74.5). Patients revealed a coronary multi-vessel-disease in 75% with a median SYNTAX-II-score of 35.3 (IQR 30.2–41.2). The most common type of DD was type III (50%), followed by type I (38%) and type II (13%). In most patients (88%) the DD involved the right coronary arterial ostium. 63% were treated by PCI, the remaining patients were treated conservatively. 88% of patients received at least one cCTA within 2 days, 50% were additionally followed-up by cCTA within a median of 6 months (range: 4–8 months) without any residual.
Conclusion: Independently of the type of DD (I-III) it was demonstrated that cCTA represents a valuable imaging modality for detection and follow-up of patients with DDs
Interventional Therapies for Post-Cardiac Arrest Patients Suffering from Coronary Artery Disease
Acute myocardial infarction and coronary artery disease (CAD) are the most common causes for the development of malignant arrhythmia often leading to cardiogenic shock and cardiac arrest. Structural heart disease represents the main pathology in older patients, whereas young adults mostly suffer from cardiomyopathies and channelopathies. This book chapter delineates modern interventional therapies for patients with cardiogenic shock or aborted cardiac arrest. Epidemiological data on the incidence of malignant arrhythmia depending causing cardiac arrest depending on the presence or absence of CAD and myocardial infarction are presented. Realistic difficulties within clinical decision-making are counterbalanced for and against an early, aggressive and invasive therapeutic approach including early coronary angiography with percutaneous coronary intervention (PCI), targeted temperature management and mechanical cardiac assist devices, depending on the individual clinical presentation and underlying cardiac arrhythmia
Comparative analysis of high-sensitivity cardiac troponin I and T for their association with coronary computed tomography-assessed calcium scoring represented by the Agatston score
Background: This study evaluates the association between high-sensitivity cardiac troponin I (hs-cTnI) and T (hs-cTnT) and coronary calcium concentration (CAC) detected by coronary computed tomography (CCT) and evaluated with the Agatston score in patients with suspected coronary artery disease (CAD).
Methods: Patients undergoing CCT during routine clinical care were enrolled prospectively. CCT was indicated for patients with a low to intermediate pretest probability for CAD. Within 24 h of CCT examination, peripheral blood samples were taken to measure cardiac biomarkers hs-cTnI and hs-cTnT.
Results: A total of 76 patients were enrolled including 38% without detectable CAC, 36% with an Agatston score from 1 to 100, 17% from 101 to 400, and 9% with values ≥ 400. hs-cTnI was increasing alongside Agatston score and was able to differentiate between different groups of Agatston scores. Both hs-cTn discriminated values greater than 100 (hs-cTnI, AUC = 0.663; p = 0.032; hs-cTnT, AUC = 0.650; p = 0.048). In univariate and multivariate logistic regression models, hs-cTnT and hs-cTnI were significantly associated with increased Agatston scores. Patients with hs-cTnT ≥ 0.02 µg/l and hs-cTnI ≥ 5.5 ng/l were more likely to reveal values ≥ 400 (hs-cTnT; OR = 13.4; 95% CI 1.545–116.233; p = 0.019; hs-cTnI; OR = 8.8; 95% CI 1.183–65.475; p = 0.034).
Conclusion: The present study shows that the Agatston score was significantly correlated with hs cardiac troponins, both in univariable and multivariable linear regression models. Hs-cTnI is able to discriminate between different Agatston values. The present results might reveal potential cut-off values for hs cardiac troponins regarding different Agatston values.
Trial registration Cardiovascular Imaging and Biomarker Analyses (CIBER), NCT03074253 https://clinicaltrials.gov/ct2/show/record/NCT0307425
- …
