88 research outputs found

    How Common are the Magellanic Clouds?

    Full text link
    We introduce a probabilistic approach to the problem of counting dwarf satellites around host galaxies in databases with limited redshift information. This technique is used to investigate the occurrence of satellites with luminosities similar to the Magellanic Clouds around hosts with properties similar to the Milky Way in the object catalog of the Sloan Digital Sky Survey. Our analysis uses data from SDSS Data Release 7, selecting candidate Milky-Way-like hosts from the spectroscopic catalog and candidate analogs of the Magellanic Clouds from the photometric catalog. Our principal result is the probability for a Milky-Way-like galaxy to host N_{sat} close satellites with luminosities similar to the Magellanic Clouds. We find that 81 percent of galaxies like the Milky Way are have no such satellites within a radius of 150 kpc, 11 percent have one, and only 3.5 percent of hosts have two. The probabilities are robust to changes in host and satellite selection criteria, background-estimation technique, and survey depth. These results demonstrate that the Milky Way has significantly more satellites than a typical galaxy of its luminosity; this fact is useful for understanding the larger cosmological context of our home galaxy.Comment: Updated to match published version. Added referenc

    The Asymptotic Form of Cosmic Structure: Small Scale Power and Accretion History

    Get PDF
    We explore the effects of small scale structure on the formation and equilibrium of dark matter halos in a universe dominated by vacuum energy. We present the results of a suite of four N-body simulations, two with a LCDM initial power spectrum and two with WDM-like spectra that suppress the early formation of small structures. All simulations are run into to far future when the universe is 64Gyr/h old, long enough for halos to essentially reach dynamical equilibrium. We quantify the importance of hierarchical merging on the halo mass accretion history, the substructure population, and the equilibrium density profile. We modify the mass accretion history function of Wechsler et al. (2002) by introducing a parameter, \gamma, that controls the rate of mass accretion, dln(M) / dln(a) ~ a^(-\gamma), and find that this form characterizes both hierarchical and monolithic formation. Subhalo decay rates are exponential in time with a much shorter time scale for WDM halos. At the end of the simulations, we find truncated Hernquist density profiles for halos in both the CDM and WDM cosmologies. There is a systematic shift to lower concentration for WDM halos, but both cosmologies lie on the same locus relating concentration and formation epoch. Because the form of the density profile remains unchanged, our results indicate that the equilibrium halo density profile is set independently of the halo formation process.Comment: 17 pages, submitted to ApJ. Full resolution version avaliable at http://www-personal.umich.edu/~mbusha/Papers/AccretionHistory.pd

    Density mapping with weak lensing and phase information

    Get PDF
    The available probes of the large scale structure in the Universe have distinct properties: galaxies are a high resolution but biased tracer of mass, while weak lensing avoids such biases but, due to low signal-to-noise ratio, has poor resolution. We investigate reconstructing the projected density field using the complementarity of weak lensing and galaxy positions. We propose a maximum-probability reconstruction of the 2D lensing convergence with a likelihood term for shear data and a prior on the Fourier phases constructed from the galaxy positions. By considering only the phases of the galaxy field, we evade the unknown value of the bias and allow it to be calibrated by lensing on a mode-by-mode basis. By applying this method to a realistic simulated galaxy shear catalogue, we find that a weak prior on phases provides a good quality reconstruction down to scales beyond l=1000, far into the noise domain of the lensing signal alone.Comment: 11 pages, 9 figures, published in MNRA

    A High Throughput Workflow Environment for Cosmological Simulations

    Get PDF
    The next generation of wide-area sky surveys offer the power to place extremely precise constraints on cosmological parameters and to test the source of cosmic acceleration. These observational programs will employ multiple techniques based on a variety of statistical signatures of galaxies and large-scale structure. These techniques have sources of systematic error that need to be understood at the percent-level in order to fully leverage the power of next-generation catalogs. Simulations of large-scale structure provide the means to characterize these uncertainties. We are using XSEDE resources to produce multiple synthetic sky surveys of galaxies and large-scale structure in support of science analysis for the Dark Energy Survey. In order to scale up our production to the level of fifty 10^10-particle simulations, we are working to embed production control within the Apache Airavata workflow environment. We explain our methods and report how the workflow has reduced production time by 40% compared to manual management.Comment: 8 pages, 5 figures. V2 corrects an error in figure

    Sample variance in photometric redshift calibration: cosmological biases and survey requirements

    Get PDF
    We use N-body/photometric galaxy simulations to examine the impact of sample variance of spectroscopic redshift samples on the accuracy of photometric redshift (photo-z) determination and calibration of photo-z errors. We estimate the biases in the cosmological parameter constraints from weak lensing and derive requirements on the spectroscopic follow-up for three different photo-z algorithms chosen to broadly span the range of algorithms available. We find that sample variance is much more relevant for the photo-z error calibration than for photo-z training, implying that follow-up requirements are similar for different algorithms. We demonstrate that the spectroscopic sample can be used for training of photo-zs and error calibration without incurring additional bias in the cosmological parameters. We provide a guide for observing proposals for the spectroscopic follow-up to ensure that redshift calibration biases do not dominate the cosmological parameter error budget. For example, assuming optimistically (pessimistically) that the weak lensing shear measurements from the Dark Energy Survey could obtain 1σ constraints on the dark energy equation of state w of 0.035 (0.055), implies a follow-up requirement of 150 (40) patches of sky with a telescope such as Magellan, assuming a 1/8 deg2 effective field of view and 400 galaxies per patch. Assuming (optimistically) a VIMOS-VLT Deep Survey-like spectroscopic completeness with purely random failures, this could be accomplished with about 75 (20) nights of observation. For more realistic assumptions regarding spectroscopic completeness, or with the presence of other sources of systematics not considered here, further degradations to dark energy constraints are possible. We test several approaches for making the requirements less stringent. For example, if the redshift distribution of the overall sample can be estimated by some other technique, e.g. cross-correlation, then follow-up requirements could be reduced by an order of magnitud

    Connecting Reionization to the Local Universe

    Full text link
    We present results of combined N-body and three-dimensional reionization calculations to determine the relationship between reionization history and local environment in a volume 1 Gpc/h across and a resolution of about 1 Mpc. We resolve the formation of about 2x10^6 halos of mass greater than ~10^12 Msun at z=0, allowing us to determine the relationship between halo mass and reionization epoch for galaxies and clusters. For our fiducial reionization model, in which reionization begins at z~15 and ends by z~6, we find a strong bias for cluster-size halos to be in the regions which reionized first, at redshifts 10<z<15. Consequently, material in clusters was reionized within relatively small regions, on the order of a few Mpc, implying that all clusters in our calculation were reionized by their own progenitors. Milky Way mass halos were on average reionized later and by larger regions, with a distribution similar to the global one, indicating that low mass halos are relatively uncorrelated with reionization when only their mass is taken as a prior. On average, we find that most halos with mass less than 10^13 Msun were reionized internally, while almost all halos with masses greater than 10^14 Msun were reionized by their own progenitors. We briefly discuss the implications of this work in light of the "missing satellites" problem and how this new approach may be extended further.Comment: 4 pages, 5 figures, submitted to ApJ Letters, comments welcome. See http://www.slac.stanford.edu/~malvarez/ReionLocal for high resolution figures and animation

    A theoretical framework for combining techniques that probe the link between galaxies and dark matter

    Full text link
    We develop a theoretical framework that combines measurements of galaxy-galaxy lensing, galaxy clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring each of these probes individually, attempts to combine them are still in their infancy despite the potential of such combinations to elucidate the galaxy-dark matter connection, to constrain cosmological parameters, and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the galaxy-dark matter connection based on standard halo occupation distribution techniques. Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe. In a companion paper, we demonstrate that the model presented here provides an excellent fit to galaxy-galaxy lensing, galaxy clustering, and stellar mass functions measured in the COSMOS survey from z=0.2 to z=1.0. We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance on each of the three probes. Finally, we analyze and discuss how trends in each of the three observables impact the derived parameters of the model. In particular, we investigate the various features of the observed galaxy stellar mass function (low-mass slope, plateau, knee, and high-mass cut-off) and show how each feature is related to the underlying relationship between stellar and halo mass. We demonstrate that the observed plateau feature in the stellar mass function at Mstellar~2x10^10 Msun is due to the transition that occurs in the stellar-to-halo mass relation at Mhalo ~ 10^12 Msun from a low-mass power-law regime to a sub-exponential function at higher stellar mass.Comment: 21 pages. Accepted to Ap

    Cosmological Constraints from Galaxy Clustering and the Mass-to-Number Ratio of Galaxy Clusters

    Full text link
    We place constraints on the average density (Omega_m) and clustering amplitude (sigma_8) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w_p, and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w_p measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct non-linear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w_p and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Omega_m or sigma_8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, even though this technique does not use abundance information. Using w_p and M/N alone, we find Omega_m^0.5*sigma_8=0.465+/-0.026, with individual constraints of Omega_m=0.29+/-0.03 and sigma_8=0.85+/-0.06. Combined with current CMB data, these constraints are Omega_m=0.290+/-0.016 and sigma_8=0.826+/-0.020. All errors are 1-sigma. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.Comment: 23 pages, submitted to Ap

    Mapping the Universe: The 2010 Russell Lecture

    Full text link
    Redshift surveys are a powerful tool of modern cosmology. We discuss two aspects of their power to map the distribution of mass and light in the universe: (1) measuring the mass distribution extending into the infall regions of rich clusters and (2) applying deep redshift surveys to the selection of clusters of galaxies and to the identification of very large structures (Great Walls). We preview the HectoMAP project, a redshift survey with median redshift z = 0.34 covering 50 square degrees to r= 21. We emphasize the importance and power of spectroscopy for exploring and understanding the nature and evolution of structure in the universe.Comment: 19 pages, 5 figures (2 videos available in the on-line journal article

    The Effects of Patchy Reionization on Satellite Galaxies of the Milky Way

    Full text link
    We combine the high-resolution Aquarius simulations with three-dimensional models of reionization based on the initial density field of the Aquarius parent simulation, Millennium-II, to study the impact of patchy reionization on the faint satellite population of Milky Way halos. Because the Aquarius suite consists of zoom-in simulations of halos in the Millennium-II volume, we follow the formation of substructure and the growth of reionization bubbles due to the larger environment simultaneously, and thereby determine the reionization redshifts of satellite candidates. We do this for four different reionization models, and also compare results to instantaneous reionization. Using a simple procedure for selecting satellites and assigning luminosities in the simulations, we compare the resulting satellite populations. We find that the overall number of satellites depends sensitively on the reionization model, with a factor of 3-4 variation between the four models for a given host halo, although the difference is entirely in the population of faint satellites (M_V > -10). In addition, we find that for a given reionization model the total number of satellites differs by 10%-20% between the patchy and homogeneous scenarios, provided that the redshift is chosen appropriately for the instantaneous case. However, the halo-halo scatter from the six Aquarius halos is large, up to a factor of 2-3, and so is comparable to the difference between reionization scenarios. In order to use the population of faint dwarf galaxies around the Milky Way as a probe of the local reionization history, then, it is necessary to first better understand the general distribution of substructure around Milky Way-mass halos.Comment: Matches published version. Reionization discussion expanded, major conclusions unchange
    corecore