1,325 research outputs found
Incentive-Based Instruments for Water Management
This report provides a synthesis review of a set of incentive-based instruments that have been employed to varying degrees around the world. It is part of an effort by The Rockefeller Foundation to improve understanding of both the potential of these instruments and their limitations. The report is divided into five sections. Section 1 provides an introduction to the synthesis review. Section 2 describes the research methodology. Section 3 provides background on policy instruments and detail on three incentive-based instruments -- water trading, payment for ecosystem services, and water quality trading -- describing the application of each, including their environmental, economic, and social performances, and the conditions needed for their implementation. Section 4 highlights the role of the private sector in implementing these instruments, and Section 5 provides a summary and conclusions
Phased Array-Fed Reflector (PAFR) Antenna Architectures for Space-Based Sensors
Communication link and target ranges for satellite communications (SATCOM) and space-based sensors (e.g. radars) vary from approximately 1000 km (for LEO satellites) to 35,800 km (for GEO satellites). At these long ranges, large antenna gains are required and legacy payloads have usually employed large reflectors with single beams that are either fixed or mechanically steered. For many applications, there are inherent limitations that are associated with the use of these legacy antennas/payloads. Hybrid antenna designs using Phased Array Fed Reflectors (PAFRs) provide a compromise between reflectors and Direct Radiating phased Arrays (DRAs). PAFRs provide many of the performance benefits of DRAs while utilizing much smaller, lower cost (feed) arrays. The primary limitation associated with hybrid PAFR architectures is electronic scan range; approximately +/-5 to +/- 10 degrees is typical, but this range depends on many factors. For LEO applications, the earth FOV is approximately +/-55 degrees which is well beyond the range of electronic scanning for PAFRs. However, for some LEO missions, limited scanning is sufficient or the CONOPS and space vehicle designs can be developed to incorporate a combination mechanical slewing and electronic scanning. In this paper, we review, compare and contrast various PAFR architectures with a focus on their general applicability to space missions. We compare the RF performance of various PAFR architectures and describe key hardware design and implementation trades. Space-based PAFR designs are highly multi-disciplinary and we briefly address key hardware engineering design areas. Finally, we briefly describe two PAFR antenna architectures that have been developed at Northrop Grumman
Miniature modular microwave end-to-end receiver
An end-to-end microwave receiver system contained in a single miniature hybrid package mounted on a single heatsink is presented. It includes an input end connected to a microwave receiver antenna and an output end which produces a digital count proportional to the amplitude of a signal of a selected microwave frequency band received at the antenna and corresponding to one of the water vapor absorption lines near frequencies of 20 GHz or 30 GHz. The hybrid package is on the order of several centimeters in length and a few centimeters in height and width. The package includes an L-shaped carrier having a base surface, a vertical wall extending up from the base surface and forming a corner therewith, and connection pins extending through the vertical wall. Modular blocks rest on the base surface against the vertical wall and support microwave monolithic integrated circuits on top surfaces thereof connected to the external connection pins. The modular blocks lie end-to-end on the base surface so as to be modularly removable by sliding along the base surface beneath the external connection pins away from the vertical wall
Vegetation Dynamics in ENP Marshes, with Emphasis on Taylor Slough (IOP Congressional Report)
A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV
Benign Paroxysmal Positional Vertigo (BPPV) is a mechanical disorder of the
vestibular system in which calcite particles called otoconia interfere with the
mechanical functioning of the fluid-filled semicircular canals normally used to
sense rotation. Using hydrodynamic models, we examine the two mechanisms
proposed by the medical community for BPPV: cupulolithiasis, in which otoconia
attach directly to the cupula (a sensory membrane), and canalithiasis, in which
otoconia settle through the canals and exert a fluid pressure across the
cupula. We utilize known hydrodynamic calculations and make reasonable
geometric and physical approximations to derive an expression for the
transcupular pressure exerted by a settling solid particle in
canalithiasis. By tracking settling otoconia in a two-dimensional model
geometry, the cupular volume displacement and associated eye response
(nystagmus) can be calculated quantitatively. Several important features
emerge: 1) A pressure amplification occurs as otoconia enter a narrowing duct;
2) An average-sized otoconium requires approximately five seconds to settle
through the wide ampulla, where is not amplified, which suggests a
mechanism for the observed latency of BPPV; and 3) An average-sized otoconium
beginning below the center of the cupula can cause a volumetric cupular
displacement on the order of 30 pL, with nystagmus of order /s, which
is approximately the threshold for sensation. Larger cupular volume
displacement and nystagmus could result from larger and/or multiple otoconia.Comment: 15 pages, 5 Figures updated, to be published in J. Biomechanic
First-Year Student Success Initiative: New Student Orientation Working Group Video
Michael Cooley, Director of Enrollment Information Systems discusses the goals of the new student orientation working group that is part of the First-Year Student Success Initiative at UMaine
Effect of Hydrologic Restoration on the Habitat of The Cape Sable Seaside Sparrow, Annual Report of 2002-2003
After developing field sampling protocols and making a series of consultations with investigators involved in research in CSSS habitat, we determined that vegetationhydrology interactions within this landscape are best sampled at a combination of scales. At the finer scale, we decided to sample at 100 m intervals along transects that cross the range of habitats present, and at the coarser scale, to conduct an extensive survey of vegetation at sites of known sparrow density dispersed throughout the range of the CSSS. We initiated sampling in the first week of January 2003 and continued it through the last week of May. During this period, we established 6 transects, one in each CSSS subpopulation, completed topographic survey along the Transects A, C, D, and F, and sampled herb and shrub stratum vegetation, soil depth and periphyton along Transects A, and at 179 census points. We also conducted topographic surveys and completed vegetation and soil depth sampling along two of five transects used by ENP researchers for monitoring long-term vegetation change in Taylor Slough. We analyzed the data by summarizing the compositional and structural measures and by using cluster analysis, ordination, weighted averaging regression, and weighted averaging calibration. The mean elevation of transects decreased from north to south, and Transect F had greater variation than other transects. We identified eight vegetation assemblages that can be grouped into two broad categories, ‘wet prairie’ and ‘marsh’. In the 2003 survey, wet prairies were most dominant in the northeastern sub-populations, and had shorter inferred-hydroperiod, higher species richness and shallower soils than marshes, which were common in Subpopulations A, D, and the southernmost regions of Sub-population B. Most of the sites at which birds were observed during 2001 or 2002 had an inferred-hydroperiod of 120-150 days, while no birds were observed at sites with an inferred-hydroperiod less than 120 days or more than 300 days. Management-induced water level changes in Taylor Slought during the 1980’s and 1990’s appeared to elicit parallel changes in vegetation. The results described in detail in the following pages serve as a basis for evaluating and modifying, if necessary, the sampling design and analytical techniques to be used in the next three years of the project
Optimized energy calculation in lattice systems with long-range interactions
We discuss an efficient approach to the calculation of the internal energy in
numerical simulations of spin systems with long-range interactions. Although,
since the introduction of the Luijten-Bl\"ote algorithm, Monte Carlo
simulations of these systems no longer pose a fundamental problem, the energy
calculation is still an O(N^2) problem for systems of size N. We show how this
can be reduced to an O(N logN) problem, with a break-even point that is already
reached for very small systems. This allows the study of a variety of, until
now hardly accessible, physical aspects of these systems. In particular, we
combine the optimized energy calculation with histogram interpolation methods
to investigate the specific heat of the Ising model and the first-order regime
of the three-state Potts model with long-range interactions.Comment: 10 pages, including 8 EPS figures. To appear in Phys. Rev. E. Also
available as PDF file at
http://www.cond-mat.physik.uni-mainz.de/~luijten/erikpubs.htm
Effect of Hydrologic Restoration on the Habitat of The Cape Sable Seaside Sparrow, Annual Report of 2004-2005
The major activities in Year 3 on ‘Effect of hydrologic restoration on the habitat of the Cape Sable seaside sparrow (CSSS)’ included presentations, field work, data analysis, and report preparation. During this period, we made 4 presentations, two at the CSSS – fire planning workshops at Everglades National Park (ENP), one at the Society of Wetland Scientists’ meeting in Charleston, SC, and a fourth at the Marl Prairie/CSSS performance measure workshop at ENP. We started field work in the third week of January and continued till June 3, 2005. Early in the field season, we completed vegetation surveys along two transects, B and C (~15.1 km). During April and May, vegetation sampling was completed at 199 census sites, bringing to 608 the total number of CSSS census sites with quantitative vegetation data. We updated data sets from all three years, 2003-05, and analyzed them using cluster analysis and ordination as in previous two years. However, instead of weighted averaging, we used weighted-averaging partial least square regression (WA-PLS) model, as this method is considered an improvement over WA for inferring values of environmental variables from biological species composition. We also validated the predictive power of the WA-PLS regression model by applying it to a sub-set of 100 census sites for which hydroperiods were “known” from two sources, i.e., from elevations calculated from concurrent water depth measurements onsite and at nearby water level recorders, and from USGS digital elevation data. Additionally, we collected biomass samples at 88 census sites, and determined live and dead aboveground plant biomass. Using vegetation structure and biomass data from those sites, we developed a regression model that we used to predict aboveground biomass at all transects and census sites. Finally, biomass data was analyzed in relation to hydroperiod and fire frequency
- …
