2,705 research outputs found

    K Giants in Baade's Window. II. The Abundance Distribution

    Get PDF
    This is the second in a series of papers in which we analyze spectra of over 400 K and M giants in Baade's Window, including most of the stars with proper motions measured by Spaenhauer et al. [AJ, 103, 297 (1992)]. In our first paper, we measured line--strength indices of Fe, Mg, CN and Hβ\beta and calibrated them on the system of Faber et al. [ApJS, 57, 711 (1985)]. Here, we use the Fe\langle{\rm Fe}\rangle index to derive an abundance distribution in [Fe/H] for 322 stars with effective temperatures between 3900 K and 5160 K. Our derived values of [Fe/H] agree well with those measured from high--resolution echelle spectra (e.g., McWilliam \& Rich [ApJS, 91, 749 (1994)]) for the small number of stars in common. We find a mean abundance [Fe/H]=0.11±0.04\langle{\rm [Fe/H]}\rangle = -0.11 \pm 0.04 for our sample of Baade's Window K giants. More than half the sample lie in the range 0.4<-0.4 < \feh\ <+0.3<+0.3. We estimate line--of--sight distances for individual stars in our sample and confirm that, in Baade's Window, most K giants with V<15.5V < 15.5 are foreground disk stars, but the great majority (more than 80\%) with V>16V > 16 belong to the bulge. We also compare the metallicities derived from the CN and Mg2_2 indices to those from iron. Most of the metal--rich stars in our sample appear to be CN--weak, in contrast to the situation in metal--rich globular clusters and elliptical galaxies. The metal--poor half of our sample ([Fe/H] <0< 0) shows evidence for a mild Mg overenhancement ([Mg/Fe] +0.2\sim +0.2); but this is not seen in the more metal--rich stars ([Fe/H] \geq 0). The K giants in Baade's Window therefore share some, but not all, of the characteristics of stars in elliptical galaxies as inferred from their integrated light.Comment: Accepted for publication in the Astronomical Journal, tentatively scheduled for July, 1996. LaTex source which generates 40 pages of text (no figures or tables). Complete (text + 15 figs + 5 tables) preprint in gzip/tar format is also available at ftp://bessel.mps.ohio-state.edu/pub/terndrup/kg2.tar.gz (227 kbyte

    New High Proper Motion Stars from the Digitized Sky Survey. II. Northern Stars with 0.5<mu<2.0 arcsec/yr at High Galactic Latitudes

    Full text link
    In a continuation of our systematic search for high proper motion stars in the Digitized Sky Survey, we have completed the analysis of northern sky fields at galactic latitudes above 25 degrees. With the help of our SUPERBLINK software, a powerful automated blink comparator developed by us, we have identified 1146 stars in the magnitude range 8<r<20 with proper motions 0.500<mu<2.000 arcsec/yr. These include 1080 stars previously listed in Luyten's proper motion catalogs (LHS, NLTT), 9 stars not previously listed in the Luyten catalogs but reported elsewhere in the literature (including 1 previously reported by our team), and 57 new objects reported here for the first time. This paper includes a list of positions, proper motions, magnitudes, and finder charts for all the new high proper motion stars. Combined with our previous study of low galactic latitude fields (see Paper I), our survey now covers over 98% of the northern sky. We conclude that the Luyten catalogs were 90% complete in the northern sky for stars with 0.5<mu<2.0 arcsec/yr down to magnitude r=19. We discuss the incompleteness of the old Luyten proper motion survey, and estimate completeness limits for our new survey.Comment: To appear in The Astronomical Journa

    Cool White Dwarfs Revisited -- New Spectroscopy and Photometry

    Get PDF
    In this paper we present new and improved data on 38 cool white dwarfs identified by Oppenheimer et al. 2001 (OHDHS) as candidate dark halo objects. Using the high-res spectra obtained with LRIS, we measure radial velocities for 13 WDs that show an H alpha line. We show that the knowledge of RVs decreases the UV-plane velocities by only 6%. The radial velocity sample has a W-velocity dispersion of sig_W = 59 km/s--in between the values associated with the thick disk and the stellar halo. We also see indications for the presence of two populations by analyzing the velocities in the UV plane. In addition, we present CCD photometry for half of the sample, and with it recalibrate the photographic photometry of the remaining WDs. Using the new photometry in standard bands, and by applying the appropriate color-magnitude relations for H and He atmospheres, we obtain new distance estimates. New distances of the WDs that were not originally selected as halo candidates yield 13 new candidates. On average, new distances produce velocities in the UV plane that are larger by 10%, with already fast objects gaining more. Using the new data, while applying the same UV-velocity cut (94 km/s) as in OHDHS, we find a density of cool WDs of 1.7e-4 pc^-3, confirming the value of OHDHS. In addition, we derive the density as a function of the UV-velocity cutoff. The density (corrected for losses due to higher UV cuts) starts to flatten out at 150 km/s (0.4e-4 pc^-3), and is minimized (thus minimizing a possible non-halo contamination) at 190 km/s (0.3e-4 pc^-3). These densities are in a rough agreement with the estimates for the stellar halo WDs, corresponding to a factor of 1.9 and 1.4 higher values.Comment: Accepted to ApJ. New version contains some additional data. Results unchange

    The Faint End Slopes Of Galaxy Luminosity Functions In The COSMOS 2-Square Degree Field

    Full text link
    We examine the faint-end slope of the rest-frame V-band luminosity function (LF), with respect to galaxy spectral type, of field galaxies with redshift z<0.5, using a sample of 80,820 galaxies with photometric redshifts in the Cosmic Evolution Survey (COSMOS) field. For all galaxy spectral types combined, the LF slope, alpha, ranges from -1.24 to -1.12, from the lowest redshift bin to the highest. In the lowest redshift bin (0.02<z<0.1), where the magnitude limit is M(V) ~ -13, the slope ranges from ~ -1.1 for galaxies with early-type spectral energy distributions (SEDs), to ~ -1.9 for galaxies with low-extinction starburst SEDs. In each galaxy SED category (Ell, Sbc, Scd/Irr, and starburst), the faint-end slopes grow shallower with increasing redshift; in the highest redshift bin (0.4<z<0.5), the slope is ~ -0.5 and ~ -1.3 for early-types and starbursts respectively. The steepness of alpha at lower redshift could be qualitatively explained by large numbers of faint dwarf galaxies, perhaps of low surface brightness, which are not detected at higher redshifts.Comment: 24 pages including 5 figures, accepted to ApJ

    The kinematics of ionized gas in lyman-break analogs at z ~ 0.2

    Get PDF
    We present results for 19 “Lyman-break analogs” observed with Keck/OSIRIS with an adaptive-optics-assisted spatial resolution of less than 200 pc. We detect satellites/companions, diffuse emission, and velocity shear, all with high signal-to-noise ratios. These galaxies present remarkably high velocity dispersion along the line of sight (~70 km s^(−1)), much higher than standard star-forming spirals in the low-redshift universe. We artificially redshift our data to z ~ 2.2 to allow for a direct comparison with observations of high-z Lyman-break galaxies and find striking similarities between both samples. This suggests that either similar physical processes are responsible for their observed properties, or, alternatively, that it is very difficult to distinguish between different mechanisms operating in the low- versus high-redshift starburst galaxies based on the available data. The comparison between morphologies in the UV/optical continuum and our kinemetry analysis often shows that neither is by itself sufficient to confirm or completely rule out the contribution from recent merger events. We find a correlation between the kinematic properties and stellar mass, in that more massive galaxies show stronger evidence for a disk-like structure. This suggests a co-evolutionary process between the stellar mass buildup and the formation of morphological and dynamical substructure within the galaxy

    The Initial-Final Mass Relation: Direct Constraints at the Low Mass End

    Full text link
    The initial-final mass relation represents a mapping between the mass of a white dwarf remnant and the mass that the hydrogen burning main-sequence star that created it once had. The relation thus far has been constrained using a sample of ~40 stars in young open clusters, ranging in initial mass from ~2.75 -- 7 Msun, and shows a general trend that connects higher mass main-sequence stars with higher mass white dwarfs. In this paper, we present CFHT/CFH12K photometric and Keck/LRIS multiobject spectroscopic observations of a sample of 22 white dwarfs in two older open clusters, NGC 7789 (t = 1.4 Gyr) and NGC 6819 (t = 2.5 Gyr). We measure masses for the highest S/N spectra by fitting the Balmer lines to atmosphere models and place the first direct constraints on the low mass end of the initial-final mass relation. Our results indicate that the observed general trend at higher masses continues down to low masses, with M_initial = 1.16 Msun main-sequence stars forming M_final = 0.53 Msun white dwarfs (including our data from the very old open cluster, NGC 6791). This extention of the relation represents a four fold increase in the total number of hydrogen burning stars for which the integrated mass loss can now be calculated, assuming a Salpeter initial mass function. The new leverage at the low mass end is used to derive a purely empirical initial-final mass relation without the need for any indirectly derived anchor points. The sample of white dwarfs in these clusters also shows several very interesting systems that we discuss further: a DB (helium atmosphere) white dwarf, a magnetic white dwarf, a DAB (mixed hydrogen/helium atmosphere or a double degenerate DA+DB) white dwarf(s), and two possible equal mass DA double degenerate binary systems.Comment: 18 pages, 12 figures, 3 tables. Submitted to Astrophys. J. Revised from first versio

    The Space Density of Extended Ultraviolet (XUV) Disks in the Local Universe and Implications for Gas Accretion on to Galaxies

    Get PDF
    We present results of the first unbiased search for extended UV (XUV)-disk galaxies undertaken to determine the space density of such galaxies. Our sample contains 561 local (0.001 < z < 0.05) galaxies that lie in the intersection of available GALEX deep imaging (exposure time > 1.5 x 10^4 s) and SDSS DR7 footprints. We explore modifications to the standard classification scheme for our sample that includes both disk- and bulge-dominated galaxies. Visual classification of each galaxy in the sample reveals an XUV-disk frequency of up to 20% for the most nearby portion of our sample. On average over the entire sample (out to z=0.05) the frequency ranges from a hard limit of 4% to 14%. The GALEX imaging allows us to detect XUV-disks beyond 100 Mpc. The XUV regions around XUV-disk galaxies are consistently bluer than the main bodies. We find a surprisingly high frequency of XUV emission around luminous red (NUV-r > 5) and green valley (3 < NUV-r < 5) galaxies. The XUV-disk space density in the local universe is > 1.5-4.2 x 10^-3 Mpc^-3. Using the XUV emission as an indicator of recent gas accretion, we estimate that the cold gas accretion rate onto these galaxies is > 1.7-4.6 x 10^-3 Msun Mpc^-3 yr^-1. The number of XUV-disks in the green valley and the estimated accretion rate onto such galaxies points to the intriguing possibility that 7%-18% of galaxies in this population are transitioning away from the red sequence.Comment: 19 pages, 24 figures, ApJ in Pres

    The Spectral Types of White Dwarfs in Messier 4

    Full text link
    We present the spectra of 24 white dwarfs in the direction of the globular cluster Messier 4 obtained with the Keck/LRIS and Gemini/GMOS spectrographs. Determining the spectral types of the stars in this sample, we find 24 type DA and 0 type DB (i.e., atmospheres dominated by hydrogen and helium respectively). Assuming the ratio of DA/DB observed in the field with effective temperature between 15,000 - 25,000 K, i.e., 4.2:1, holds for the cluster environment, the chance of finding no DBs in our sample due simply to statistical fluctuations is only 6 X 10^(-3). The spectral types of the ~100 white dwarfs previously identified in open clusters indicate that DB formation is strongly suppressed in that environment. Furthermore, all the ~10 white dwarfs previously identified in other globular clusters are exclusively type DA. In the context of these two facts, this finding suggests that DB formation is suppressed in the cluster environment in general. Though no satisfactory explanation for this phenomenon exists, we discuss several possibilities.Comment: Accepted for Publication in Astrophys. J. 11 pages including 4 figures and 2 tables (journal format

    The First Detailed Abundances for M giants in Baade's Window from Infrared Spectroscopy

    Full text link
    We report the first abundance analysis of 14 M giant stars in the Galactic bulge, based on R=25,000 infrared spectroscopy (1.5-1.8um) using NIRSPEC at the Keck II telescope. Because some of the bulge M giants reach high luminosities and have very late spectral type, it has been suggested that they are the progeny of only the most metal rich bulge stars, or possibly members of a younger bulge population. We find the iron abundance and composition of the M giants are similar to those of the K giants that have abundances determined from optical high resolution spectroscopy: =-0.190 +/- 0.020 with a 1-sigma dispersion of 0.08 +/- 0.015. Comparing our bulge M giants to a control sample of local disk M giants in the Solar vicinity, we find the bulge stars are enhanced in alpha elements at the level of +0.3 dex relative to the Solar composition stars, consistent with other studies of bulge globular clusters and field stars. This small sample shows no dependence of spectral type on metallicity, nor is there any indication that the M giants are the evolved members of a subset of the bulge population endowed with special characteristics such as relative youth or high metallicity. We also find low 12C/13C < 10, confirming the prsence of extra-mixing processes during the red gaint phase of evolutionComment: 19 pages, 7 figures, accepted for publication in the Astrophysical Journa

    High resolution infrared spectra of bulge globular clusters: Liller~1 and NGC 6553

    Get PDF
    Using the NIRSPEC spectrograph at Keck II, we have obtained echelle spectra covering the range 1.5-1.8um for 2 of the brightest giants in Liller 1 and NGC 6553, old metal rich globular clusters in the Galactic bulge. We use spectrum synthesis for the abundance analysis, and find [Fe/H]=-0.3 +/- 0.2 and [O/H]=+0.3 +/- 0.2 dex. The composition of the clusters is similar to that of field stars in the bulge and is consistent with a sceanrio in which the clusters formed early, with rapid enrichment. We have dificulty achieveing a good fit to the spectrum of NGC 6553 using either the low or the high values recently reported in the literature, unless unusually large, or no alpha-element enhancements are adopted, respectively.Comment: To appear in the Astronomical Journal, March 200
    corecore