41 research outputs found
New models for alternatives to detention in the US
While there is growing recognition of the value of community-based alternatives to detention in the US, shortfalls in funding and political will are hindering implementation of improved services and best practice
In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor
Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor
A Fourth Amendment for the Poor Alone: Subconstitutional Status and the Myth of the Inviolate Home
Recommended from our members
Brain-wide representations of prior information in mouse decision-making.
The neural representations of prior information about the state of the world are poorly understood1. Here, to investigate them, we examined brain-wide Neuropixels recordings and widefield calcium imaging collected by the International Brain Laboratory. Mice were trained to indicate the location of a visual grating stimulus, which appeared on the left or right with a prior probability alternating between 0.2 and 0.8 in blocks of variable length. We found that mice estimate this prior probability and thereby improve their decision accuracy. Furthermore, we report that this subjective prior is encoded in at least 20% to 30% of brain regions that, notably, span all levels of processing, from early sensory areas (the lateral geniculate nucleus and primary visual cortex) to motor regions (secondary and primary motor cortex and gigantocellular reticular nucleus) and high-level cortical regions (the dorsal anterior cingulate area and ventrolateral orbitofrontal cortex). This widespread representation of the prior is consistent with a neural model of Bayesian inference involving loops between areas, as opposed to a model in which the prior is incorporated only in decision-making areas. This study offers a brain-wide perspective on prior encoding at cellular resolution, underscoring the importance of using large-scale recordings on a single standardized task
Nuevos modelos de alternativas a la detención en Estados Unidos
Aunque en Estados Unidos se reconoce cada vez más el valor de las alternativas a la detención basadas en la comunidad, la escasez de financiación y de voluntad política está entorpeciendo la implementación de unos servicios y prácticas que son mejores
Formulation of Statistical Linearization for M-D-O-F Systems Subject to Combined Periodic and Stochastic Excitations
Maternal supplementation with cobalt sources, folic acid, and rumen-protected methionine and its effects on molecular and functional correlates of the immune system in neonatal Holstein calves
© 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Calves born to multiparous Holstein cows fed during the last 30 d of pregnancy 2 different cobalt sources [cobalt glucoheptonate (CoPro) or cobalt pectin (CoPectin)], folic acid (FOA), and rumen-protected methionine (RPM) were used to study neonatal immune responses after ex vivo lipopolysaccharide (LPS) challenge. Groups were (n = 12 calves/group) CoPro, FOA+CoPro, FOA+CoPectin, and FOA+CoPectin+RPM. Calves were weighed at birth and blood collected at birth (before colostrum), 21 d of age, and 42 d of age (at weaning). Growth performance was recorded once a week during the first 6 wk of age. Energy metabolism, inflammation, and antioxidant status were assessed at birth through various plasma biomarkers. Whole blood was challenged with 3 µg/mL of LPS or used for phagocytosis and oxidative burst assays. Target genes evaluated by real-time quantitative PCR in whole blood samples were associated with immune response, antioxidant function, and 1-carbon metabolism. The response in mRNA abundance in LPS challenged versus nonchallenged samples was assessed via Δ = LPS challenged − LPS nonchallenged samples. Phagocytosis capacity and oxidative burst activity were measured in neutrophils and monocytes, with data reported as ratio (percentage) of CD14 to CH138A-positive cells. Data including all time points were subjected to ANOVA using PROC MIXED in SAS 9.4 (SAS Institute Inc.), with Treatment, Sex, Age, and Treatment × Age as fixed effects. A 1-way ANOVA was used to determine differences at birth, with Treatment and Sex as fixed effects. Calf birth body weight and other growth parameters did not differ between groups. At birth, plasma haptoglobin concentration was lower in FOA+CoPro compared with CoPro calves. We detected no effect for other plasma biomarkers or immune function due to maternal treatments at birth. Compared with CoPro, in response to LPS challenge, whole blood from FOA+CoPectin and FOA+CoPectin+RPM calves had greater mRNA abundance of intercellular adhesion molecule 1 (ICAM1). No effect for other genes was detectable. Regardless of maternal treatments, sex-specific responses were observed due to greater plasma concentrations of haptoglobin, paraoxonase, total reactive oxygen metabolites, nitrite, and β-carotene in female versus male calves at birth. In contrast, whole blood from male calves had greater mRNA abundance of IRAK1, CADM1, and ITGAM in response to LPS challenge at birth. The longitudinal analysis of d 0, 21, and 42 data revealed greater bactericidal permeability-increasing protein (BPI) mRNA abundance in whole blood from FOA+CoPectin versus FOA+CoPro calves, coupled with greater abundance in FOA+CoPro compared with CoPro calves. Regardless of maternal treatments, most genes related to cytokines and cytokine receptors (IL1B, IL10, TNF, IRAK1, CXCR1), toll-like receptor pathway (TLR4, NFKB1), adhesion and migration (ICAM1, ITGAM), antimicrobial function (MPO), and antioxidant function (GPX1) were downregulated over time. Phagocytosis capacity and oxidative burst activity in both neutrophils and monocytes did not differ due to maternal treatment. Regardless of maternal treatments, we observed an increase in the percentage of neutrophils capable of phagocytosis and oxidative burst activity over time. Overall, these preliminary assessments suggested that maternal supplementation with FOA and Co combined with RPM had effects on a few plasma biomarkers of inflammation at birth and molecular responses associated with inflammatory mechanisms during the neonatal period
