369 research outputs found

    Ancient origin and maternal inheritance of blue cuckoo eggs

    Get PDF
    Maternal inheritance via the female-specific W chromosome was long ago proposed as a potential solution to the evolutionary enigma of co-existing host-specific races (or 'gentes') in avian brood parasites. Here we report the first unambiguous evidence for maternal inheritance of egg colouration in the brood-parasitic common cuckoo Cuculus canorus. Females laying blue eggs belong to an ancient (∼2.6 Myr) maternal lineage, as evidenced by both mitochondrial and W-linked DNA, but are indistinguishable at nuclear DNA from other common cuckoos. Hence, cuckoo host races with blue eggs are distinguished only by maternally inherited components of the genome, which maintain host-specific adaptation despite interbreeding among males and females reared by different hosts. A mitochondrial phylogeny suggests that blue eggs originated in Asia and then expanded westwards as female cuckoos laying blue eggs interbred with the existing European population, introducing an adaptive trait that expanded the range of potential hosts

    Hybridization between white-headed ducks and introduced ruddy ducks in Spain

    Get PDF
    The ruddy duck, Oxyura jamaicensis , was introduced to Great Britain in the mid-20th century and has recently spread to other Western European countries. In Spain, ruddy ducks hybridize with the globally endangered white-headed duck, Oxyura leucocephala . We assessed the effects of hybridization on the Spanish white-headed ducks, which constitute 25% of the global population of this species, using a panel of eight nuclear intron markers, 10 microsatellite loci, and mtDNA control region sequences. These data allowed parental individuals, F 1 hybrids, and the progeny of backcrossing to be reliably distinguished. We show that hybrids between the two species are fertile and produce viable offspring in backcrosses with both parental species. To date, however, we found no extensive introgression of ruddy duck genes into the Spanish white-headed duck population, probably due to the early implementation of an effective ruddy duck and hybrid control programme. We also show that genetic diversity in the expanding European ruddy duck population, which was founded by just seven individuals, exceeds that of the native Spanish white-headed duck population, which recently recovered from a severe bottleneck. Unless effective control of ruddy ducks is continued, genetic introgression will compromise the unique behavioural and ecological adaptations of white-headed ducks and consequently their survival as a genetically and evolutionary distinct species.Peer reviewe

    A SINGLE ANCIENT ORIGIN OF BROOD PARASITISM IN AFRICAN FINCHES: IMPLICATIONS FOR HOST-PARASITE COEVOLUTION

    Full text link
    . Robust phylogenies for brood-parasitic birds, their hosts, and nearest nesting relatives provide the framework to address historical questions about host-parasite coevolution and the origins of parasitic behavior. We tested phylogenetic hypotheses for the two genera of African brood-parasitic finches, Anomalospiza and Vidua , using mitochondrial DNA sequence data from 43 passeriform species. Our analyses strongly support a sister relationship between Vidua and Anomalospiza , leading to the conclusion that obligate brood parasitism evolved only once in African finches rather than twice, as has been the conventional view. In addition, the parasitic finches (Viduidae) are not recently derived from either weavers (Ploceidae) or grassfinches (Estrildidae), but represent a third distinct lineage. Among these three groups, the parasitic finches and estrildids, which includes the hosts of all 19 Vidua species, are sister taxa in all analyses of our full dataset. Many characters shared by Vidua and estrildids, including elaborate mouth markings in nestlings, unusual begging behavior, and immaculate white eggs, can therefore be attributed to common ancestry rather than convergent evolution. The host-specificity of mouth mimicry in Vidua species, however, is clearly the product of subsequent host-parasite coevolution. The lineage leading to Anomalospiza switched to parasitizing more distantly related Old World warblers (Sylviidae) and subsequently lost these characteristics. Substantial sequence divergence between Vidua and Anomalospiza indicates that the origin of parasitic behavior in this clade is ancient (∼20 million years ago), a striking contrast to the recent radiation of extant Vidua . We suggest that the parasitic finch lineage has experienced repeated cycles of host colonization, speciation, and extinction through their long history as brood parasites and that extant Vidua species represent only the latest iterations of this process. This dynamic process may account for a significantly faster rate of DNA sequence evolution in parasitic finches as compared to estrildids and other passerines. Our study reduces by one the tally of avian lineages in which obligate brood parasitism has evolved and suggests an origin of parasitism that involved relatively closely related species likely to accept and provide appropriate care to parasitic young. Given the ancient origin of parasitism in African finches, ancestral estrildids must have been parasitized well before the diversification of extant Vidua , suggesting a long history of coevolution between these lineages preceding more recent interactions between specific hosts and parasites.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72018/1/j.0014-3820.2001.tb00768.x.pd

    Identification of Birds through DNA Barcodes

    Get PDF
    Short DNA sequences from a standardized region of the genome provide a DNA barcode for identifying species. Compiling a public library of DNA barcodes linked to named specimens could provide a new master key for identifying species, one whose power will rise with increased taxon coverage and with faster, cheaper sequencing. Recent work suggests that sequence diversity in a 648-bp region of the mitochondrial gene, cytochrome c oxidase I (COI), might serve as a DNA barcode for the identification of animal species. This study tested the effectiveness of a COI barcode in discriminating bird species, one of the largest and best-studied vertebrate groups. We determined COI barcodes for 260 species of North American birds and found that distinguishing species was generally straightforward. All species had a different COI barcode(s), and the differences between closely related species were, on average, 18 times higher than the differences within species. Our results identified four probable new species of North American birds, suggesting that a global survey will lead to the recognition of many additional bird species. The finding of large COI sequence differences between, as compared to small differences within, species confirms the effectiveness of COI barcodes for the identification of bird species. This result plus those from other groups of animals imply that a standard screening threshold of sequence difference (10× average intraspecific difference) could speed the discovery of new animal species. The growing evidence for the effectiveness of DNA barcodes as a basis for species identification supports an international exercise that has recently begun to assemble a comprehensive library of COI sequences linked to named specimens

    Genetic continuity of brood-parasitic indigobird species

    Full text link
    Speciation in brood-parasitic indigobirds (genus Vidua ) is a consequence of behavioural imprinting in both males and females. Mimicry of host song by males and host fidelity in female egg laying result in reproductive isolation of indigobirds associated with a given host species. Colonization of new hosts and subsequent speciation require that females occasionally lay eggs in the nests of novel hosts but the same behaviour may lead to hybridization when females parasitize hosts already associated with other indigobird species. Thus, retained ancestral polymorphism and ongoing hybridization are two alternative explanations for the limited genetic differentiation among indigobird species. We tested for genetic continuity of indigobird species using mitochondrial sequences and nuclear microsatellite data. Within West Africa and southern Africa, allopatric populations of the same species are generally more similar to each other than to sympatric populations of different species. Likewise, a larger proportion of genetic variation is explained by differences between species than by differences between locations in alternative hierarchical amovas, suggesting that the rate of hybridization is not high enough to homogenize sympatric populations of different species or prevent genetic differentiation between species. Broad sharing of genetic polymorphisms among species, however, suggests that some indigobird species trace to multiple host colonization events in space and time, each contributing to the formation of a single interbreeding population bound together by songs acquired from the host species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75693/1/j.1365-294X.2005.02492.x.pd

    Dopamine receptor genetic polymorphisms and body composition in undernourished pastoralists: An exploration of nutrition indices among nomadic and recently settled Ariaal men of northern Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Minor alleles of the human dopamine receptor polymorphisms, DRD2/TaqI A and DRD4/48 bp, are related to decreased functioning and/or numbers of their respective receptors and have been shown to be correlated with body mass, height and food craving. In addition, the 7R minor allele of the DRD4 gene is at a higher frequency in nomadic compared to sedentary populations. Here we examine polymorphisms in the DRD2 and DRD4 genes with respect to body mass index (BMI) and height among men in two populations of Ariaal pastoralists, one recently settled (n = 87) and the other still nomadic (n = 65). The Ariaal live in northern Kenya, are chronically undernourished and are divided socially among age-sets.</p> <p>Results</p> <p>Frequencies of the DRD4/7R and DRD2/A1 alleles were 19.4% and 28.2%, respectively and did not differ between the nomadic and settled populations. BMI was higher in those with one or two DRD4/7R alleles in the nomadic population, but lower among the settled. Post-hoc analysis suggests that the DRD4 differences in BMI were due primarily to differences in fat free body mass. Height was unrelated to either DRD2/TaqI A or DRD4/48 bp genotypes.</p> <p>Conclusion</p> <p>Our results indicate that the DRD4/7R allele may be more advantageous among nomadic than settled Ariaal men. This result suggests that a selective advantage mediated through behaviour may be responsible for the higher frequency of the 7R alleles in nomadic relative to sedentary populations around the world. In contrast to previous work, we did not find an association between DRD2 genotypes and height. Our results support the idea that human phenotypic expression of genotypes should be rigorously evaluated in diverse environments and genetic backgrounds.</p

    Behavioural and genetic evidence of a recent population switch to a novel host species in brood-parasitic indigobirds Vidua chalybeata

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73593/1/j.1474-919X.2002.00065.x.pd

    Phylogeny of snakes (Serpentes): combining morphological and molecular data in likelihood Bayesian and parsimony analyses

    Get PDF
    Copyright © 2007 The Natural history MuseumThe phylogeny of living and fossil snakes is assessed using likelihood and parsimony approaches and a dataset combining 263 morphological characters with mitochondrial (2693 bp) and nuclear (1092 bp) gene sequences. The ‘no common mechanism’ (NCMr) and ‘Markovian’ (Mkv) models were employed for the morphological partition in likelihood analyses; likelihood scores in the NCMr model were more closely correlated with parsimony tree lengths. Both models accorded relatively less weight to the molecular data than did parsimony, with the effect being milder in the NCMr model. Partitioned branch and likelihood support values indicate that the mtDNA and nuclear gene partitions agree more closely with each other than with morphology. Despite differences between data partitions in phylogenetic signal, analytic models, and relative weighting, the parsimony and likelihood analyses all retrieved the following widely accepted groups: scolecophidians, alethinophidians, cylindrophiines, macrostomatans (sensu lato) and caenophidians. Anilius alone emerged as the most basal alethinophidian; the combined analyses resulted in a novel and stable position of uropeltines and cylindrophiines as the second-most basal clade of alethinophidians. The limbed marine pachyophiids, along with Dinilysia and Wonambi, were always basal to all living snakes. Other results stable in all combined analyses include: Xenopeltis and Loxocemus were sister taxa (fide morphology) but clustered with pythonines (fide molecules), and Ungaliophis clustered with a boine-erycine clade (fide molecules). Tropidophis remains enigmatic; it emerges as a basal alethinophidian in the parsimony analyses (fide molecules) but a derived form in the likelihood analyses (fide morphology), largely due to the different relative weighting accorded to data partitions.Michael S. Y. Lee, Andrew F. Hugall, Robin Lawson & John D. Scanlo
    corecore