248 research outputs found

    (ÿ)-Fern-7-en-3a-ol from Sebastiania brasiliensis

    Get PDF
    The structure of a fernane isolated from S. brasiliensis was established as fern-7en-3[alpha]-ol, C30H50O. Rings A and D assume a chair conformation, while rings B and C adopt a twist-boat conformation. Rings A/B, C/D, and D/E are trans fused. The relative orientation of the hydroxy group and that of the iso­propyl group is [alpha].This structure was determined in the Molecular Structure Laboratory of the Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA. The SMART1000 diffractometer was gratefully obtained with funds provided by NSF grant CHE9610374. This study was supported by NIH grant 5U01TW00316-10 awarded to BNT. This study was undertaken as part of the required course work for the class CHEM 517 offered by Dr J. H. Enemark at the University of Arizona. The authors thank Liliya Yatsunyk for her help in this study

    (4R,4aR,6S,7S,7aS)-6-Hydroxy-7-hy- droxymethyl-4-methylperhydrocyclo- penta[c]pyran-1-one chloroform solvate from Valeriana laxiflora

    Get PDF
    The structure of an iridolactone isolated from Valeriana laxiflora was established as (4R,4aR,6S,7S,7aS)-6-hydroxy-7-hydroxy­methyl-4-methyl­per­hydro­cyclo­penta­[c]­pyran-1-one chloro­form solvate, C10H16O4·CHCl3. The two rings are cis-fused. The [delta]-lactone ring adopts a slightly twisted half-chair conformation with approximate planarity of the lactone group and the cyclo­pentane ring adopts an envelope conformation. The hydroxy group, the hydroxymethyl group and the methyl group all have [beta] orientations. The absolute configuration was determined using anomalous dispersion data enhanced by the adventitious inclusion of a chloro­form solvent mol­ecule. Hydro­gen bonding, crystal packing and ring conformations are discussed in detail.The structure of the title compound was determined in the Molecular Structure Laboratory of the Department of Chemistry, University of Arizona. The diffractometer was obtained with funds provided by the NSF (grant No. CHE9610374). This study was supported by NIH grant No. 5U01TW00316-10 awarded to BNT

    Использование барий-стронциевого карбонатита при изготовлении сварочных флюсов на основе техногенных отходов металлургического производства

    Get PDF
    В данной работе рассмотрена возможность использования барий-стронциевого карбонатита при изготовлении сварочных флюсов на основе шлака производства силикомарганца, а так же на основе ковшевых электросталеплавильных шлаков, образованных при производстве рельсовых марок стали. В серии опытов в лабораторных условиях изготавливали и исследовали различные составы сварочных флюсов, были определены химические составы наплавленного металла, проведен металлографический анализ.In this paper the possibility of using barium-strontium carbonatite in the manufacture of welding fluxes on the basis of slag from the production of silicomanganese, and based on ladle steelmaking slags formed in the production of rail steel grades. In a series of experiments in the laboratory have produced and investigated different compositions of welding fluxes, were determined the chemical compositions of the weld metal metallographic analysis

    Safety of long-term denosumab therapy: results from the open label extension phase of two phase 3 studies in patients with metastatic breast and prostate cancer

    Get PDF
    Purpose: Zoledronic acid (ZA) or denosumab treatment reduces skeletal-related events; however, the safety of prolonged therapy has not been adequately studied. Here, we describe safety results of extended denosumab therapy in patients with bone metastases from the open-label extension phase of two phase 3 trials. Methods: Patients with metastatic breast or prostate cancer received subcutaneous denosumab 120 mg Q4W or intravenous ZA 4 mg Q4W in a double-blinded fashion. Denosumab demonstrated superior efficacy in the blinded treatment phase; thus, patients were offered open-label denosumab for up to an additional 2 years. Results: Cumulative median (Q1, Q3) denosumab exposure was 19.1 (9.2, 32.2) months in the breast cancer trial (n = 1019) and 12.0 (5.6, 21.3) months in the prostate cancer trial (n = 942); 295 patients received denosumab for >3 years. No new safety signals were identified during the open-label phase, or among patients who switched from ZA to denosumab. During the blinded treatment phase, exposure-adjusted subject incidences of osteonecrosis of the jaw (ONJ) were 49 (1.9 %) and 31 (1.2 %) in the denosumab and ZA groups, respectively. In total, 32 (6.9 %) and 25 (5.5 %) new cases of ONJ (not adjusted for exposure) were reported for patients continuing and switching to denosumab, respectively. The incidences of hypocalcemia were 4.3 and 3.1 %, in patients continuing and switching to denosumab, respectively. Conclusion: These results describe the safety profile of denosumab after long-term exposure, or after switching to denosumab from ZA. No new safety signals were identified. Hypocalcemia rates were similar in the blinded treatment and open-label phases. ONJ rates increased with increasing exposure to antiresorptives, consistent with previous reports

    A Pilot Phase II Study of Digoxin in Patients with Recurrent Prostate Cancer as Evident by Rising PSA

    Get PDF
    Background: Digoxin was found to inhibit prostate cancer (PCa) growth via the inhibition of HIF-1α synthesis in a mouse model. We hypothesized that a therapeutic dose of digoxin could inhibit human PCa growth and disease progression. Methods: An open label, single arm pilot study was performed. Patients (pts) with non-metastatic, biochemically relapsed PCa with prostate specific antigen doubling time (PSADT) of 3 -24 months and no hormonal therapy within the past 6 months were enrolled. All pts had testosterone 50 ng/dL at baseline. Digoxin was taken daily with dose titration to achieve a target therapeutic level (0.8 – 2 ng/ml); patients had routine follow-up including cardiac monitoring with 12-lead electrocardiograms (ECGs) and digoxin levels. The primary endpoint was the proportion of pts at 6 months post-treatment with a PSADT 200% from the baseline. HIF-1α downstream molecule vascular endothelial growth factor (VEGF) was measured in plasma.Results: Sixteen pts were enrolled and 14 pts finished the planned 6 months of treatment. Twenty percent (3/15) of the pts had PSA decrease 25% from baseline with a medium duration of 14 months. At 6 months, 5 of 13 (38%) pts had PSADT 200% of the baseline PSADT and were continued on study for an additional 24 weeks of treatment. Two patients had durable PSA response for more than 1 year. Digoxin was well tolerated with possible relation of one grade 3 back pain. No patients had evidence of digoxin toxicity. The digoxin dose was lowered in 2 patients for significant ECGs changes (sinus bradycardia and QT prolongation), and there were probable digoxin-related ECG changes in 3 patients. Plasma VEGF was detected in 4 (25%) patients. Conclusions: Digoxin was well tolerated and showed a prolongation of PSDAT in 38% of the patients. However, there was no significant difference comparing that of similar patients on placebo from historical data. Digoxin at the dose used in this study may have limited benefit for patients with biochemically relapsed prostate cancer

    Pharmacogenetic Discovery in CALGB (Alliance) 90401 and Mechanistic Validation of a VAC14 Polymorphism That Increases Risk of Docetaxel-Induced Neuropathy

    Get PDF
    Purpose Discovery of single nucleotide polymorphisms (SNPs) that predict a patient\u27s risk of docetaxel-induced neuropathy would enable treatment individualization to maximize efficacy and avoid unnecessary toxicity. The objectives of this analysis were to discover SNPs associated with docetaxel-induced neuropathy and mechanistically validate these associations in preclinical models of drug-induced neuropathy. Experimental Design A genome-wide association study was conducted in metastatic castrate-resistant prostate cancer patients treated with docetaxel, prednisone and randomized to bevacizumab or placebo on CALGB 90401. SNPs were genotyped on the Illumina HumanHap610-Quad platform followed by rigorous quality control. The inference was conducted on the cumulative dose at occurrence of grade 3+ sensory neuropathy using a cause-specific hazard model that accounted for early treatment discontinuation. Genes with SNPs significantly associated with neuropathy were knocked down in cellular and mouse models of drug-induced neuropathy. Results 498,081 SNPs were analyzed in 623 Caucasian patients, 50 (8%) of whom experienced grade 3+ neuropathy. The 1000 SNPs most associated with neuropathy clustered in relevant pathways including neuropathic pain and axonal guidance. A SNP in VAC14 (rs875858) surpassed genome-wide significance (p=2.12×10-8 adjusted p=5.88×10-7). siRNA knockdown of VAC14 in stem cell derived peripheral neuronal cells increased docetaxel sensitivity as measured by decreased neurite processes (p=0.0015) and branches (p\u3c0.0001). Prior to docetaxel treatment VAC14 heterozygous mice had greater nociceptive sensitivity than wild-type litter mate controls (p=0.001). Conclusions VAC14 should be prioritized for further validation of its potential role as a predictor of docetaxel-induced neuropathy and biomarker for treatment individualization

    The N-Myc Down Regulated Gene1 (NDRG1) Is a Rab4a Effector Involved in Vesicular Recycling of E-Cadherin

    Get PDF
    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein

    Downregulation of Homologous Recombination DNA Repair Genes by HDAC Inhibition in Prostate Cancer Is Mediated through the E2F1 Transcription Factor

    Get PDF
    Histone deacetylase inhibitors (HDACis) re-express silenced tumor suppressor genes and are currently undergoing clinical trials. Although HDACis have been known to induce gene expression, an equal number of genes are downregulated upon HDAC inhibition. The mechanism behind this downregulation remains unclear. Here we provide evidence that several DNA repair genes are downregulated by HDAC inhibition and provide a mechanism involving the E2F1 transcription factor in the process.Applying Analysis of Functional Annotation (AFA) on microarray data of prostate cancer cells treated with HDACis, we found a number of genes of the DNA damage response and repair pathways are downregulated by HDACis. AFA revealed enrichment of homologous recombination (HR) DNA repair genes of the BRCA1 pathway, as well as genes regulated by the E2F1 transcription factor. Prostate cancer cells demonstrated a decreased DNA repair capacity and an increased sensitization to chemical- and radio-DNA damaging agents upon HDAC inhibition. Recruitment of key HR repair proteins to the site of DNA damage, as well as HR repair capacity was compromised upon HDACi treatment. Based on our AFA data, we hypothesized that the E2F transcription factors may play a role in the downregulation of key repair genes upon HDAC inhibition in prostate cancer cells. ChIP analysis and luciferase assays reveal that the downregulation of key repair genes is mediated through decreased recruitment of the E2F1 transcription factor and not through active repression by repressive E2Fs.Our study indicates that several genes in the DNA repair pathway are affected upon HDAC inhibition. Downregulation of the repair genes is on account of a decrease in amount and promoter recruitment of the E2F1 transcription factor. Since HDAC inhibition affects several pathways that could potentially have an impact on DNA repair, compromised DNA repair upon HDAC inhibition could also be attributed to several other pathways besides the ones investigated in this study. However, our study does provide insights into the mechanism that governs downregulation of HR DNA repair genes upon HDAC inhibition, which can lead to rationale usage of HDACis in the clinics
    corecore