107 research outputs found

    Assessment of Emergency Medicine Resident Performance in a Pediatric In Situ Simulation Using Multi-Source Feedback.

    Get PDF
    Introduction Multi-source feedback (MSF) is an evaluation method mandated by the Accreditation Council for Graduate Medical Education (ACGME). The Queen\u27s Simulation Assessment Tool (QSAT) has been validated as being able to distinguish between resident performances in a simulation setting. The QSAT has also been demonstrated to have excellent MSF agreement when used in an adult simulation performed in a simulation lab. Using the QSAT, this study sought to determine the degree of agreement of MSF in a single pediatric (Peds) simulation case conducted in situ in a Peds emergency department (ED). Methods This Institutional Review Board-approved study was conducted in a four-year emergency medicine residency. A Peds resuscitation case was developed with specific behavioral anchors on the QSAT, which uses a 1-5 scale in each of five categories: Primary Assessment, Diagnostic Actions, Therapeutic Actions, Communication, and Overall Assessment. Data was gathered from six participants for each simulation. The lead resident self-evaluated and received MSF from a junior peer resident, a fixed Peds ED nurse, a random ED nurse, and two faculty (one fixed, the other from a dyad). The agreement was calculated with intraclass correlation coefficients (ICC). Results The simulation was performed on 35 separate days over two academic years. A total of 106 MSF participants were enrolled. Enrollees included three faculty members, 35 team leaders, 34 peers, 33 ED registered nurses (RN), and one Peds RN; 50% of the enrollees were female (n=53). Mean QSAT scores ranged from 20.7 to 23.4. A fair agreement was demonstrated via ICC; there was no statistically significant difference between sources of MSF. Removing self-evaluation led to the highest ICC. ICC for any single or grouped non-faculty source of MSF was poor. Conclusion Using the QSAT, the findings from this single-site cohort suggest that faculty must be included in MSF. Self-evaluation appears to be of limited value in MSF with the QSAT. The degree of MSF agreement as gathered by the QSAT was lower in this cohort than previously reported for adult simulation cases performed in the simulation lab. This may be due to either the pediatric nature of the case, the location of the simulation, or both

    Decompression for Chiari malformation type II in individuals with myelomeningocele in the National Spina Bifida Patient Registry

    Get PDF
    Objective: The purpose of this study was to determine the rate of decompression for Chiari malformation type II in individuals with myelomeningocele in the National Spina Bifida Patient Registry (NSBPR). In addition, the authors explored the variation in rates of Chiari II decompression across NSBPR institutions, examined the relationship between Chiari II decompression and functional lesion level of the myelomeningocele, age, and need for tracheostomy, and they evaluated for temporal trends in rates of Chiari II decompression. Methods: The authors queried the NSBPR to identify all individuals with myelomeningocele between 2009 and 2015. Among these patients, they identified individuals who had undergone at least 1 Chiari II decompression as well as those who had undergone tracheostomy. For each participating NSBPR institution, the authors calculated the proportion of patients enrolled at that site who underwent Chiari II decompression. Logistic regression was performed to analyze the relationship between Chiari II decompression, functional lesion level, age at decompression, and history of tracheostomy. Results: Of 4448 individuals with myelomeningocele identified from 26 institutions, 407 (9.15%) had undergone at least 1 Chiari II decompression. Fifty-one patients had undergone tracheostomy. Logistic regression demonstrated a statistically significant relationship between Chiari II decompression and functional lesion level of the myelomeningocele, with a more rostral lesion level associated with a higher likelihood of posterior fossa decompression. Similarly, children born before 2005 and those with history of tracheostomy had a significantly higher likelihood of Chiari II decompression. There was no association between functional lesion level and need for tracheostomy. However, among those children who underwent Chiari II decompression, the likelihood of also undergoing tracheostomy increased significantly with younger age at decompression. Conclusions: The rate of Chiari II decompression in patients with myelomeningocele in the NSBPR is consistent with that in previously published literature. There is a significant relationship between Chiari II decompression and functional lesion level of the myelomeningocele, which has not previously been reported. Younger children who undergo Chiari II decompression are more likely to have undergone tracheostomy. There appears to be a shift away from Chiari II decompression, as children born before 2005 were more likely to undergo Chiari II decompression than those born in 2005 or later

    AGN STORM 2: V. Anomalous Behavior of the CIV Light Curve in Mrk 817

    Full text link
    An intensive reverberation mapping campaign on the Seyfert 1 galaxy Mrk817 using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) revealed significant variations in the response of the broad UV emission lines to fluctuations in the continuum emission. The response of the prominent UV emission lines changes over a \sim60-day duration, resulting in distinctly different time lags in the various segments of the light curve over the 14 months observing campaign. One-dimensional echo-mapping models fit these variations if a slowly varying background is included for each emission line. These variations are more evident in the CIV light curve, which is the line least affected by intrinsic absorption in Mrk817 and least blended with neighboring emission lines. We identify five temporal windows with distinct emission line response, and measure their corresponding time delays, which range from 2 to 13 days. These temporal windows are plausibly linked to changes in the UV and X-ray obscuration occurring during these same intervals. The shortest time lags occur during periods with diminishing obscuration, whereas the longest lags occur during periods with rising obscuration. We propose that the obscuring outflow shields the ultraviolet broad lines from the ionizing continuum. The resulting change in the spectral energy distribution of the ionizing continuum, as seen by clouds at a range of distances from the nucleus, is responsible for the changes in the line response.Comment: 20 pages, 8 figures, submitted to Ap

    AGN STORM 2. IV. Swift X-ray and ultraviolet/optical monitoring of Mrk 817

    Full text link
    The AGN STORM 2 campaign is a large, multiwavelength reverberation mapping project designed to trace out the structure of Mrk 817 from the inner accretion disk to the broad emission line region and out to the dusty torus. As part of this campaign, Swift performed daily monitoring of Mrk 817 for approximately 15 months, obtaining observations in X-rays and six UV/optical filters. The X-ray monitoring shows that Mrk 817 was in a significantly fainter state than in previous observations, with only a brief flare where it reached prior flux levels. The X-ray spectrum is heavily obscured. The UV/optical light curves show significant variability throughout the campaign and are well correlated with one another, but uncorrelated with the X-rays. Combining the Swift UV/optical light curves with Hubble UV continuum light curves, we measure interband continuum lags, τ(λ)\tau(\lambda), that increase with increasing wavelength roughly following τ(λ)λ4/3\tau(\lambda) \propto \lambda^{4/3}, the dependence expected for a geometrically thin, optically thick, centrally illuminated disk. Modeling of the light curves reveals a period at the beginning of the campaign where the response of the continuum is suppressed compared to later in the light curve - the light curves are not simple shifted and scaled versions of each other. The interval of suppressed response corresponds to a period of high UV line and X-ray absorption, and reduced emission line variability amplitudes. We suggest that this indicates a significant contribution to the continuum from the broad line region gas that sees an absorbed ionizing continuum.Comment: 20 pages, 13 figures, 3 tables, accepted for publication in Ap

    AGN STORM 2. I. First results: A Change in the Weather of Mrk 817

    Get PDF
    We present the first results from the ongoing, intensive, multiwavelength monitoring program of the luminous Seyfert 1 galaxy Mrk 817. While this active galactic nucleus was, in part, selected for its historically unobscured nature, we discovered that the X-ray spectrum is highly absorbed, and there are new blueshifted, broad, and narrow UV absorption lines, which suggest that a dust-free, ionized obscurer located at the inner broad-line region partially covers the central source. Despite the obscuration, we measure UV and optical continuum reverberation lags consistent with a centrally illuminated Shakura–Sunyaev thin accretion disk, and measure reverberation lags associated with the optical broad-line region, as expected. However, in the first 55 days of the campaign, when the obscuration was becoming most extreme, we observe a de-coupling of the UV continuum and the UV broad emission-line variability. The correlation recovered in the next 42 days of the campaign, as Mrk 817 entered a less obscured state. The short C IV and Lyα lags suggest that the accretion disk extends beyond the UV broad-line region. Unified

    AGN STORM 2: VIII. Investigating the Narrow Absorption Lines in Mrk 817 Using HST-COS Observations

    Full text link
    We observed the Seyfert 1 galaxy Mrk817 during an intensive multi-wavelength reverberation mapping campaign for 16 months. Here, we examine the behavior of narrow UV absorption lines seen in HST/COS spectra, both during the campaign and in other epochs extending over 14 years. We conclude that while the narrow absorption outflow system (at -3750 km/s with FWHM=177 km/s) responds to the variations of the UV continuum as modified by the X-ray obscurer, its total column density (logNH =19.5 cm-2) did not change across all epochs. The adjusted ionization parameter (scaled with respect to the variations in the Hydrogen ionizing continuum flux) is log UH =-1.0. The outflow is located at a distance smaller than 38 parsecs from the central source, which implies a hydrogen density of nH > 3000 cm-3. The absorption outflow system only covers the continuum emission source and not the broad emission line region, which suggests that its transverse size is small (< 1e16 cm), with potential cloud geometries ranging from spherical to elongated along the line of sight.18 pages, 12 Figures, Accepted for publication in Ap

    AGN STORM 2. VIII. Investigating the Narrow Absorption Lines in Mrk 817 Using HST-COS Observations*

    Get PDF
    We observed the Seyfert 1 galaxy Mrk 817 during an intensive multiwavelength reverberation mapping campaign for 16 months. Here, we examine the behavior of narrow UV absorption lines seen in the Hubble Space Telescope/Cosmic Origins Spectrograph spectra, both during the campaign and in other epochs extending over 14 yr. We conclude that, while the narrow absorption outflow system (at −3750 km s−1 with FWHM = 177 km s−1) responds to the variations of the UV continuum as modified by the X-ray obscurer, its total column density (log NH = 19.5 - + 0.13 0.61 cm−2 ) did not change across all epochs. The adjusted ionization parameter (scaled with respect to the variations in the hydrogen-ionizing continuum flux) is log UH = −1.0 - + 0.3 0.1. The outflow is located at a distance smaller than 38 pc from the central source, which implies a hydrogen density of nH > 3000 cm−3. The absorption outflow system only covers the continuum emission source and not the broad emission line region, which suggests that its transverse size is small (< 1016 cm), with potential cloud geometries ranging from spherical to elongated along the line of sight

    Genetics of human hydrocephalus

    Get PDF
    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    AGN STORM 2. VI. Mapping Temperature Fluctuations in the Accretion Disk of Mrk 817

    Get PDF
    We fit the UV/optical lightcurves of the Seyfert 1 galaxy Mrk 817 to produce maps of the accretion disk temperature fluctuations δ T resolved in time and radius. The δ T maps are dominated by coherent radial structures that move slowly (v ≪ c) inward and outward, which conflicts with the idea that disk variability is driven only by reverberation. Instead, these slow-moving temperature fluctuations are likely due to variability intrinsic to the disk. We test how modifying the input lightcurves by smoothing and subtracting them changes the resulting δ T maps and find that most of the temperature fluctuations exist over relatively long timescales (hundreds of days). We show how detrending active galactic nucleus (AGN) lightcurves can be used to separate the flux variations driven by the slow-moving temperature fluctuations from those driven by reverberation. We also simulate contamination of the continuum emission from the disk by continuum emission from the broad-line region (BLR), which is expected to have spectral features localized in wavelength, such as the Balmer break contaminating the U band. We find that a disk with a smooth temperature profile cannot produce a signal localized in wavelength and that any BLR contamination should appear as residuals in our model lightcurves. Given the observed residuals, we estimate that only ∼20% of the variable flux in the U and u lightcurves can be due to BLR contamination. Finally, we discus how these maps not only describe the data but can make predictions about other aspects of AGN variability
    corecore