465 research outputs found
A Quasi-Random Approach to Matrix Spectral Analysis
Inspired by the quantum computing algorithms for Linear Algebra problems
[HHL,TaShma] we study how the simulation on a classical computer of this type
of "Phase Estimation algorithms" performs when we apply it to solve the
Eigen-Problem of Hermitian matrices. The result is a completely new, efficient
and stable, parallel algorithm to compute an approximate spectral decomposition
of any Hermitian matrix. The algorithm can be implemented by Boolean circuits
in parallel time with a total cost of Boolean
operations. This Boolean complexity matches the best known rigorous parallel time algorithms, but unlike those algorithms our algorithm is
(logarithmically) stable, so further improvements may lead to practical
implementations.
All previous efficient and rigorous approaches to solve the Eigen-Problem use
randomization to avoid bad condition as we do too. Our algorithm makes further
use of randomization in a completely new way, taking random powers of a unitary
matrix to randomize the phases of its eigenvalues. Proving that a tiny Gaussian
perturbation and a random polynomial power are sufficient to ensure almost
pairwise independence of the phases is the main technical
contribution of this work. This randomization enables us, given a Hermitian
matrix with well separated eigenvalues, to sample a random eigenvalue and
produce an approximate eigenvector in parallel time and
Boolean complexity. We conjecture that further improvements of
our method can provide a stable solution to the full approximate spectral
decomposition problem with complexity similar to the complexity (up to a
logarithmic factor) of sampling a single eigenvector.Comment: Replacing previous version: parallel algorithm runs in total
complexity and not . However, the depth of the
implementing circuit is : hence comparable to fastest
eigen-decomposition algorithms know
Functional roles for noise in genetic circuits
The genetic circuits that regulate cellular functions are subject to stochastic fluctuations, or ‘noise’, in the levels of their components. Noise, far from just a nuisance, has begun to be appreciated for its essential role in key cellular activities. Noise functions in both microbial and eukaryotic cells, in multicellular development, and in evolution. It enables coordination of gene expression across large regulons, as well as probabilistic differentiation strategies that function across cell populations. At the longest timescales, noise may facilitate evolutionary transitions. Here we review examples and emerging principles that connect noise, the architecture of the gene circuits in which it is present, and the biological functions it enables. We further indicate some of the important challenges and opportunities going forward
Catheter-induced mechanical trauma to accessory pathways during radiofrequency ablation: incidence, predictors and clinical implications
AbstractOBJECTIVESTo evaluate the incidence, predictors and clinical implications of nonintentionally catheter-induced mechanical trauma to accessory pathways during radiofrequency ablation procedures.BACKGROUNDData on the incidence and significance of catheter-induced trauma to accessory pathways are scarce.METHODSConsecutive patients (n = 381) undergoing radiofrequency ablation of accessory pathways at two different institutions were closely monitored for appearance of mechanical block of accessory pathways during catheter manipulation.RESULTSMechanical trauma to accessory pathways was observed in 37 (9.7%) patients. According to a multivariate analysis, the only independent variable associated with this phenomenon was the anatomical pathway location (p = 0.0001). The incidence of trauma of either right anteroseptal (38.5%) or right atriofascicular pathways (33.3%) was significantly greater than that of pathways (≤10%) at all remaining locations (p < 0.0001). The duration of conduction block observed ranged from ≤1 min to >30 min in 19% and 35% of patients, respectively. “Immediate” application of radiofrequency pulses at sites of mechanical block (<1 min after occurrence) was associated with a 78% long-term success rate at follow-up. This contrasted with a 25% long-term success rate in patients in whom pulses were delivered 30 min after occurrence of block (“delayed pulses”). Finally, in 24% of patients persistent trauma-induced conduction block led to discontinuation of the ablation procedure.CONCLUSIONSTrauma to accessory pathways is more common than previously recognized and frequently results in prolongation or discontinuation of the ablation procedure and in lower success rates. The only independent predictor of catheter-trauma to accessory pathways is the pathway location
IRAS versus POTENT Density Fields on Large Scales: Biasing and Omega
The galaxy density field as extracted from the IRAS 1.2 Jy redshift survey is
compared to the mass density field as reconstructed by the POTENT method from
the Mark III catalog of peculiar velocities. The reconstruction is done with
Gaussian smoothing of radius 12 h^{-1}Mpc, and the comparison is carried out
within volumes of effective radii 31-46 h^{-1}Mpc, containing approximately
10-26 independent samples. Random and systematic errors are estimated from
multiple realizations of mock catalogs drawn from a simulation that mimics the
observed density field in the local universe. The relationship between the two
density fields is found to be consistent with gravitational instability theory
in the mildly nonlinear regime and a linear biasing relation between galaxies
and mass. We measure beta = Omega^{0.6}/b_I = 0.89 \pm 0.12 within a volume of
effective radius 40 h^{-1}Mpc, where b_I is the IRAS galaxy biasing parameter
at 12 h^{-1}Mpc. This result is only weakly dependent on the comparison volume,
suggesting that cosmic scatter is no greater than \pm 0.1. These data are thus
consistent with Omega=1 and b_I\approx 1. If b_I>0.75, as theoretical models of
biasing indicate, then Omega>0.33 at 95% confidence. A comparison with other
estimates of beta suggests scale-dependence in the biasing relation for IRAS
galaxies.Comment: 35 pages including 10 figures, AAS Latex, Submitted to The
Astrophysical Journa
Prognostication after out-of-hospital cardiac arrest, a clinical survey
Background: Numerous parameters and tests have been proposed for outcome prediction in comatose out-of-hospital cardiac arrest survivors. We conducted a survey of clinical practice of prognostication after therapeutic hypothermia (TH) became common practice in Norway. Methods: By telephone, we interviewed the consultants who were in charge of the 25 ICUs admitting cardiac patients using 6 structured questions regarding timing, tests used and medical specialties involved in prognostication, as well as the clinical importance of the different parameters used and the application of TH in these patients. Results: Prognostication was conducted within 24–48 hours in the majority (72%) of the participating ICUs. The most commonly applied parameters and tests were a clinical neurological examination (100%), prehospital data (76%), CCT (56%) and EEG (52%). The parameters and tests considered to be of greatest importance for accurate prognostication were prehospital data (56%), neurological examination (52%), and EEG (20%). In 76% of the ICUs, a multidisciplinary approach to prognostication was applied, but only one ICU used a standardised protocol. Therapeutic hypothermia was in routine use in 80% of the surveyed ICUs. Conclusion: Despite the routine use of TH, outcome prediction was performed early and was mainly based on prehospital information, neurological examination and CCT and EEG evaluation. Somatosensory evoked potentials appear to be underused and underrated, while the importance of prehospital data, CCT and EEG to appear to be overrated as methods for making accurate predictions. More evidence-based protocols for prognostication in cardiac arrest survivors, as well as additional studies on the effect of TH on known prognostic parameters are needed
Political influence through microtargeting
Political actors routinely target custom audiences on social media in order to influence elections. We model this process, focusing on the way in which it induces voters to learn about their own preferences. This differs from the past literature, which has focused on party platforms and the effects of bias. We find that the optimal strategy based on some empirically estimated parameters is to target groups favoring one’s opponents, providing a rational explanation for negative campaigning. More generally, log-concave cost of voting distributions can give rise to a non-convex set being targeted—weak supporters of the politician and strong sup porters of their opponent. We make use of this setup to provide a novel analysis of the effects of micro-targeting on turnout, and find a sense in which lower costs of voting encourage negative campaigning
Successful use of therapeutic hypothermia in an opiate induced out-of-hospital cardiac arrest complicated by severe hypoglycaemia and amphetamine intoxication: a case report
The survival to discharge rate after unwitnessed, non-cardiac out-of-hospital cardiac arrest (OHCA) is dismal. We report the successful use of therapeutic hypothermia in a 26-year old woman with OHCA due to intentional poisoning with heroin, amphetamine and insulin
Partial penetrance facilitates developmental evolution in bacteria
Development normally occurs similarly in all individuals within an isogenic population, but mutations often affect the fates of individual organisms differently. This phenomenon, known as partial penetrance, has been observed in diverse developmental systems. However, it remains unclear how the underlying genetic network specifies the set of possible alternative fates and how the relative frequencies of these fates evolve. Here we identify a stochastic cell fate determination process that operates in Bacillus subtilis sporulation mutants and show how it allows genetic control of the penetrance of multiple fates. Mutations in an intercompartmental signalling process generate a set of discrete alternative fates not observed in wild-type cells, including rare formation of two viable 'twin' spores, rather than one within a single cell. By genetically modulating chromosome replication and septation, we can systematically tune the penetrance of each mutant fate. Furthermore, signalling and replication perturbations synergize to significantly increase the penetrance of twin sporulation. These results suggest a potential pathway for developmental evolution between monosporulation and twin sporulation through states of intermediate twin penetrance. Furthermore, time-lapse microscopy of twin sporulation in wild-type Clostridium oceanicum shows a strong resemblance to twin sporulation in these B. subtilis mutants. Together the results suggest that noise can facilitate developmental evolution by enabling the initial expression of discrete morphological traits at low penetrance, and allowing their stabilization by gradual adjustment of genetic parameters
- …
