424 research outputs found

    Specification-Driven Predictive Business Process Monitoring

    Full text link
    Predictive analysis in business process monitoring aims at forecasting the future information of a running business process. The prediction is typically made based on the model extracted from historical process execution logs (event logs). In practice, different business domains might require different kinds of predictions. Hence, it is important to have a means for properly specifying the desired prediction tasks, and a mechanism to deal with these various prediction tasks. Although there have been many studies in this area, they mostly focus on a specific prediction task. This work introduces a language for specifying the desired prediction tasks, and this language allows us to express various kinds of prediction tasks. This work also presents a mechanism for automatically creating the corresponding prediction model based on the given specification. Differently from previous studies, instead of focusing on a particular prediction task, we present an approach to deal with various prediction tasks based on the given specification of the desired prediction tasks. We also provide an implementation of the approach which is used to conduct experiments using real-life event logs.Comment: This article significantly extends the previous work in https://doi.org/10.1007/978-3-319-91704-7_7 which has a technical report in arXiv:1804.00617. This article and the previous work have a coauthor in commo

    A Testability Analysis Framework for Non-Functional Properties

    Full text link
    This paper presents background, the basic steps and an example for a testability analysis framework for non-functional properties

    Closing the gap between software engineering education and industrial needs

    Get PDF
    According to different reports, many recent software engineering graduates often face difficulties when beginning their professional careers, due to misalignment of the skills learnt in their university education with what is needed in industry. To address that need, many studies have been conducted to align software engineering education with industry needs. To synthesize that body of knowledge, we present in this paper a systematic literature review (SLR) which summarizes the findings of 33 studies in this area. By doing a meta-analysis of all those studies and using data from 12 countries and over 4,000 data points, this study will enable educators and hiring managers to adapt their education / hiring efforts to best prepare the software engineering workforce

    Efficiency and Economies of Scale in Academic Knowledge Production

    Get PDF
    This paper investigates the properties of knowledge production in academic research using a panel of 17 OECD countries reaching from 1989 to 1996. The production process is modelled using capital and labour as inputs and the number of published international journal articles and/or the number of graduates as outputs. First, we test for the existence of economies of scale in academic research. Our results give indication for decreasing returns to scale in the production of new academic knowledge. This empirical result might contribute to the recent controversy on the properties of the innovation technology used in endogenous growth models. Second, we determine efficiency scores for each individual country. For the estimation of efficiencies we apply parametric and non-parametric methods. Although results differ slightly with the method used, a stable efficiency ranking is found.Academic Research, Education, Knowledge Production, Efficiency, Endogenous Growth

    Supporting Defect Causal Analysis in Practice with Cross-Company Data on Causes of Requirements Engineering Problems

    Full text link
    [Context] Defect Causal Analysis (DCA) represents an efficient practice to improve software processes. While knowledge on cause-effect relations is helpful to support DCA, collecting cause-effect data may require significant effort and time. [Goal] We propose and evaluate a new DCA approach that uses cross-company data to support the practical application of DCA. [Method] We collected cross-company data on causes of requirements engineering problems from 74 Brazilian organizations and built a Bayesian network. Our DCA approach uses the diagnostic inference of the Bayesian network to support DCA sessions. We evaluated our approach by applying a model for technology transfer to industry and conducted three consecutive evaluations: (i) in academia, (ii) with industry representatives of the Fraunhofer Project Center at UFBA, and (iii) in an industrial case study at the Brazilian National Development Bank (BNDES). [Results] We received positive feedback in all three evaluations and the cross-company data was considered helpful for determining main causes. [Conclusions] Our results strengthen our confidence in that supporting DCA with cross-company data is promising and should be further investigated.Comment: 10 pages, 8 figures, accepted for the 39th International Conference on Software Engineering (ICSE'17
    corecore