4,513 research outputs found
Infrared astronomy
The role and contributions of Frank McDonald in extending high energy astrophysics to the sub-eV photon energy range (in putting infrared astronomy into orbit) are discussed
Cosmic Histories of Stars, Gas, Heavy Elements, and Dust
We present a set of coupled equations that relate the stellar, gaseous,
chemical, and radiation constituents of the universe averaged over the whole
galaxy population. Using as input the available data from quasar
absorption-line surveys, optical imaging and redshift surveys, and the COBE
DIRBE and FIRAS extragalactic infrared background measurements, we obtain
solutions for the cosmic histories of stars, interstellar gas, heavy elements,
dust, and radiation from stars and dust in galaxies. Our solutions reproduce
remarkably well a wide variety of observations that were not used as input,
including the integrated background light from galaxy counts, the optical and
near-infrared emissivities from galaxy surveys, the local infrared emissivities
from the IRAS survey, the mean abundance of heavy elements from surveys of
damped Lyman-alpha systems, and the global star formation rates from H
surveys and submillimeter observations. The solutions presented here suggest
that the process of galaxy formation appears to have undergone an early period
of substantial inflow to assemble interstellar gas at , a subsequent
period of intense star formation and chemical enrichment at , and a recent period of rapid decline in the gas content, star
formation rate, optical stellar emissivity, and infrared dust emission at
. [abridged version]Comment: 29 pages, ApJ in press, 10 Sept 9
The Cosmic Infrared Background: Measurements and Implications
The cosmic infrared background records much of the radiant energy released by
processes of structure formation that have occurred since the decoupling of
matter and radiation following the Big Bang. In the past few years, data from
the Cosmic Background Explorer mission provided the first measurements of this
background, with additional constraints coming from studies of the attenuation
of TeV gamma-rays. At the same time there has been rapid progress in resolving
a significant fraction of this background with the deep galaxy counts at
infrared wavelengths from the Infrared Space Observatory instruments and at
submillimeter wavelengths from the Submillimeter Common User Bolometer Array
instrument. This article reviews the measurements of the infrared background
and sources contributing to it, and discusses the implications for past and
present cosmic processes.Comment: 61 pages, incl. 9 figures, to be published in Annual Reviews of
Astronomy and Astrophysics, 2001, Vol. 3
Search for Radiative Decays of Cosmic Background Neutrino using Cosmic Infrared Background Energy Spectrum
We propose to search for the neutrino radiative decay by fitting a photon
energy spectrum of the cosmic infrared background to a sum of the photon energy
spectrum from the neutrino radiative decay and a continuum. By comparing the
present cosmic infrared background energy spectrum observed by AKARI and
Spitzer to the photon energy spectrum expected from neutrino radiative decay
with a maximum likelihood method, we obatined a lifetime lower limit of to years at 95% confidence level for the
third generation neutrino in the mass range between 50 \mmev
and 150 \mmev under the present constraints by the neutrino oscillation
measurements. In the left-right symmetric model, the minimum lifetime of
is predicted to be years for of 50 \mmev. We
studied the feasibility of the observation of the neutrino radiative decay with
a lifetime of years, by measuring a continuous energy
spectrum of the cosmic infrared background
Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment
The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on chambers design features and will discuss the performance of the upgraded detector
Recommended from our members
International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci.
The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5-20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson's disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
Recommended from our members
Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations.
Primary open angle glaucoma (POAG) is a complex disease with a major genetic contribution. Its prevalence varies greatly among ethnic groups, and is up to five times more frequent in black African populations compared to Europeans. So far, worldwide efforts to elucidate the genetic complexity of POAG in African populations has been limited. We conducted a genome-wide association study in 1113 POAG cases and 1826 controls from Tanzanian, South African and African American study samples. Apart from confirming evidence of association at TXNRD2 (rs16984299; OR[T] 1.20; P = 0.003), we found that a genetic risk score combining the effects of the 15 previously reported POAG loci was significantly associated with POAG in our samples (OR 1.56; 95% CI 1.26-1.93; P = 4.79 × 10-5). By genome-wide association testing we identified a novel candidate locus, rs141186647, harboring EXOC4 (OR[A] 0.48; P = 3.75 × 10-8), a gene transcribing a component of the exocyst complex involved in vesicle transport. The low frequency and high degree of genetic heterogeneity at this region hampered validation of this finding in predominantly West-African replication sets. Our results suggest that established genetic risk factors play a role in African POAG, however, they do not explain the higher disease load. The high heterogeneity within Africans remains a challenge to identify the genetic commonalities for POAG in this ethnicity, and demands studies of extremely large size
Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.
BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24 months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500 steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30 minutes spent performing activities ≥500 counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24 months), both the number of steps per day (per 500 steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≥500 counts per minute (per 30 minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score >10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500
- …
