55 research outputs found

    Five state factors control progressive stages of freshwater salinization syndrome.

    Get PDF
    Factors driving freshwater salinization syndrome (FSS) influence the severity of impacts and chances for recovery. We hypothesize that spread of FSS across ecosystems is a function of interactions among five state factors: human activities, geology, flowpaths, climate, and time. (1) Human activities drive pulsed or chronic inputs of salt ions and mobilization of chemical contaminants. (2) Geology drives rates of erosion, weathering, ion exchange, and acidification-alkalinization. (3) Flowpaths drive salinization and contaminant mobilization along hydrologic cycles. (4) Climate drives rising water temperatures, salt stress, and evaporative concentration of ions and saltwater intrusion. (5) Time influences consequences, thresholds, and potentials for ecosystem recovery. We hypothesize that state factors advance FSS in distinct stages, which eventually contribute to failures in systems-level functions (supporting drinking water, crops, biodiversity, infrastructure, etc.). We present future research directions for protecting freshwaters at risk based on five state factors and stages from diagnosis to prognosis to cure

    Understanding the Origins of Conformational Disorder in the Crystalline Polymorphs of Irbesartan

    No full text
    The characterization of crystalline polymorphs of drug molecules is an area of great interest since these variations in solid-state structure directly influence the physical properties of such substances. Terahertz spectroscopy provides a powerful analytical tool for these investigations and has been used here to study tautomeric polymorphism and conformational disorder in crystallized irbesartan, an antihypertensive medication. The low-frequency (–1) terahertz spectra of both irbesartan Form A and Form B were measured and interpreted using solid-state density functional theory. The spectra reveal distinct identifying features for each polymorph and are indicative of the variations in the packing arrangements of the solids. The computational analyses of the solid-state forms also provide new insights into the origins and temperature dependence of the conformational disorder found in Form B. The results indicate that the disorder present in this crystal structure arises from a competition between internal conformational strain and external cohesive binding
    corecore