577 research outputs found
Scoping study on the significance of mesh resolution vs. scenario uncertainty in the CFD modelling of residential smoke control systems
Computational fluid dynamics (CFD) modelling is a commonly applied tool adopted to support the specification and design of common corridor ventilation systems in UK residential buildings. Inputs for the CFD modelling of common corridor ventilation systems are typically premised on a ‘reasonable worst case’, i.e. no specific uncertainty quantification process is undertaken to evaluate the safety level. As such, where the performance of a specific design sits on a probability spectrum is not defined. Furthermore, mesh cell sizes adopted are typically c. 100 – 200 mm. For a large eddy simulation (LES) based CFD code, this is considered coarse for this application and creates a further uncertainty in respect of capturing key behaviours in the CFD model. Both co-existing practices summarised above create uncertainty, either due to parameter choice or the (computational fire and smoke) model. What is not clear is the relative importance of these uncertainties.
This paper summarises a scoping study that subjects the noted common corridor CFD application to a probabilistic risk assessment (PRA), using the MaxEnt method. The uncertainty associated with the performance of a reference design is considered at different grid scales (achieving different ‘a posteriori’ mesh quality indicators), with the aim of quantifying the relative importance of uncertainties associated with inputs and scenarios, vs. the fidelity of the CFD model. For the specific case considered herein, it is found that parameter uncertainty has a more significant impact on the confidence of a given design solution relative to that arising from grid resolution, for grid sizes of 100 mm or less. Above this grid resolution, it was found that uncertainty associated with the model dictates. Given the specific ventilation arrangement modelled in this work care should be undertaken in generalising such conclusions
Transient reliability evaluation of a stochastic structural system in fire : application of a probability density evolution method supported by evacuation models
Structural fire resistance is a fundamental component of the overall fire safety strategy for buildings. Specifically, with respect to life safety, the structural fire resistance is intended to allow for the safe evacuation of the occupants and access for the fire & rescue service. With the proliferation of performance-based design (PBD)
methodologies, the efficiency of fire safety measures is increasingly being challenged. For low-rise buildings, with limited travel distances to a place of ultimate safety, evacuation may be very efficient, and from the perspective of life safety only limited structural fire resistance needed. For high-rise buildings with long evacuation times the opposite may be true. However, such interactions between structural and human response in fire are currently not clearly quantified, nor by extension explicitly considered in guidance. In support of rational decision making and cost-optimisation for (fire)
life safety investments, the current paper tentatively explores the relationship between evacuation times in model office buildings on the one hand, and the time-dependent failure probability of critical structural components on the other hand. As a case study, the timedependent failure probability of an insulated steel beam is evaluated, and the expected number of fatalities assessed for different model office building heights (i.e. affecting evacuation duration)
Safety factors: Can they be inherently captured in modelling assumptions? A short scoping study
This short scoping study produced by Charlie Hopkin, Danny Hopkin and Michael Spearpoint from OFR Consultants in Manchester, UK, explores different methods in which safety factors can be incorporated into fire engineering assessments and the indicative implications for the achieved safety level
Safety factors: Can they be inherently captured in modelling assumptions? A short scoping study
This short scoping study produced by Charlie Hopkin, Danny Hopkin and Michael Spearpoint from OFR Consultants in Manchester, UK, explores different methods in which safety factors can be incorporated into fire engineering assessments and the indicative implications for the achieved safety level
Characterization of early disease status in treatment-naive male paediatric patients with Fabry disease enrolled in a randomized clinical trial.
Trial designThis analysis characterizes the degree of early organ involvement in a cohort of oligo-symptomatic untreated young patients with Fabry disease enrolled in an ongoing randomized, open-label, parallel-group, phase 3B clinical trial.MethodsMales aged 5-18 years with complete α-galactosidase A deficiency, without symptoms of major organ damage, were enrolled in a phase 3B trial evaluating two doses of agalsidase beta. Baseline disease characteristics of 31 eligible patients (median age 12 years) were studied, including cellular globotriaosylceramide (GL-3) accumulation in skin (n = 31) and kidney biopsy (n = 6; median age 15 years; range 13-17 years), renal function, and glycolipid levels (plasma, urine).ResultsPlasma and urinary GL-3 levels were abnormal in 25 of 30 and 31 of 31 patients, respectively. Plasma lyso-GL-3 was elevated in all patients. GL-3 accumulation was documented in superficial skin capillary endothelial cells (23/31 patients) and deep vessel endothelial cells (23/29 patients). The mean glomerular filtration rate (GFR), measured by plasma disappearance of iohexol, was 118.1 mL/min/1.73 m(2) (range 90.4-161.0 mL/min/1.73 m(2)) and the median urinary albumin/creatinine ratio was 10 mg/g (range 4.0-27.0 mg/g). On electron microscopy, renal biopsy revealed GL-3 accumulation in all glomerular cell types (podocytes and parietal, endothelial, and mesangial cells), as well as in peritubular capillary and non-capillary endothelial, interstitial, vascular smooth muscle, and distal tubules/collecting duct cells. Lesions indicative of early Fabry arteriopathy and segmental effacement of podocyte foot processes were found in all 6 patients.ConclusionsThese data reveal that in this small cohort of children with Fabry disease, histological evidence of GL-3 accumulation, and cellular and vascular injury are present in renal tissues at very early stages of the disease, and are noted before onset of microalbuminuria and development of clinically significant renal events (e.g. reduced GFR). These data give additional support to the consideration of early initiation of enzyme replacement therapy, potentially improving long-term outcome.Trial registrationClinicalTrials.gov NCT00701415
Estimating Door Open Time Distributions for Occupants Escaping from Apartments
The door open time, resulting from occupants evacuating from apartments, is an important parameter when assessing the performance of smoke ventilation systems in high-rise apartment buildings. However, the values recommended in UK design guidance appear to have limited substantiation. Monte Carlo simulations have been carried out considering variabilities in door swing time, flow rate and number of occupants. It has been found that the door open time can be represented by a lognormal distribution with a mean of 6.6, 8.7 and 11.1 s and a standard deviation of 1.7, 3.2 and 4.7 s for one, two and three-bedroom apartments, respectively. For deterministic analyses, it is proposed that the 95th percentile values may be adopted in line with recommended practice for other fire safety design parameters such as fuel load density and soot yield, giving door open times of 10 s to 19 s, depending on the number of bedrooms
- …
