502 research outputs found
Pan-urologic cancer genomic subtypes that transcend tissue of origin
AbstractUrologic cancers include cancers of the bladder, kidney, prostate, and testes, with common molecular features spanning different types. Here, we show that 1954 urologic cancers can be classified into nine major genomic subtypes, on the basis of multidimensional and comprehensive molecular characterization (including DNA methylation and copy number, and RNA and protein expression). Tissue dominant effects are first removed computationally in order to define these subtypes, which reveal common processes—reflecting in part tumor microenvironmental influences—driving cellular behavior across tumor lineages. Six of the subtypes feature a mixture of represented cancer types as defined by tissue or cell of origin. Differences in patient survival and in the manifestation of specific pathways—including hypoxia, metabolism, NRF2-ARE, Hippo, and immune checkpoint—can further distinguish the subtypes. Immune checkpoint markers and molecular signatures of macrophages and T cell infiltrates are relatively high within distinct subsets of each cancer type studied. The pan-urologic cancer genomic subtypes would facilitate information sharing involving therapeutic implications between tissue-oriented domains.</jats:p
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Evaluation of Glypican-3 Expression in Poorly Differentiated Carcinomas of Lung Origin
Glypican-3 (GPC-3) is a glycoconjugate protein of heparan sulfate proteoglycan family and is important for embryogenesis but silenced in adult healthy tissue. GPC-3 protein is abnormally expressed in hepatocellular carcinoma (HCC) and has been used as a marker for pathological diagnosis of primary and metastatic HCC. However, GPC-3 expression has also been found in some tumors other than HCC. This study is to investigate the expression of GPC-3 expression immunohistochemically and the staining pattern in poorly differentiated carcinomas of lung primary in order to assess the value of GPC-3 as a marker for diagnosing metastatic HCC in lung. Lung tissue from 44 patients diagnosed with poorly differentiated carcinoma were evaluated, including 23 lung adenocarcinomas, 19 squamous cell carcinomas and 2 adenosquamous carcinomas. Immunohistochemical stains of GPC-3 was performed on tumor tissue samples. The expression pattern of GPC-3 was analyzed. Expression of GPC-3 was found in 45% of primary lung cancers, including 79% of squamous cell carcinomas, 18 % of adenocarcinomas, and 50% of adenosquamous carcinomas. The poorly differentiated carcinomas showed predominantly patchy positivity. The staining pattern ranged from weak granular cytoplasmic positivity to a strong membranous and cytoplasmic positivity, and both cytoplasmic and nuclear positivity. GPC-3 expression was not seen in non-neoplastic lung tissue. GPC-3 is a relatively specific marker for HCC. In this study, we demonstrated the expression of GPC-3 in a significant number of poorly differentiated carcinoma of lung. Therefore, in context of a possible metastatic HCC to the lung, caution should be made by using GPC-3 as a differential marker for HCC, and a panel of stains should be considered. [N A J Med Sci. 2020;1(1):018-023. DOI: 10.7156/najms.2020.1301018] Key Words: glypican-3, lung carcinomas, immunohistochemistry, hepatocellular carcinom
Endocrine Fibroblast Growth Factor FGF19 Promotes Prostate Cancer Progression
Abstract
Prostate cancer is the most common visceral malignancy and the second leading cause of cancer deaths in US men. There is broad evidence that fibroblast growth factor (FGF) receptors are important in prostate cancer initiation and progression, but the contribution of particular FGFs in this disease is not fully understood. The FGF family members FGF19, FGF21, and FGF23 comprise a distinct subfamily that circulate in serum and act in an endocrine manner. These endocrine FGFs require α-Klotho (KL) and/or β-Klotho (KLB), two related single-pass transmembrane proteins restricted in their tissue distribution, to act as coreceptors along with classic FGF receptors (FGFR) to mediate potent biologic activity. Here we show that FGF19 is expressed in primary and metastatic prostate cancer tissues, where it functions as an autocrine growth factor. Exogenous FGF19 promoted the growth, invasion, adhesion, and colony formation of prostate cancer cells at low ligand concentrations. FGF19 silencing in prostate cancer cells expressing autocrine FGF19 decreased invasion and proliferation in vitro and tumor growth in vivo. Consistent with these observations, KL and/or KLB were expressed in prostate cancer cells in vitro and in vivo, raising the possibility that additional endocrine FGFs may also exert biologic effects in prostate cancer. Our findings support the concept that therapies targeting FGFR signaling may have efficacy in prostate cancer and highlight FGF19 as a relevant endocrine FGF in this setting. Cancer Res; 73(8); 2551–62. ©2013 AACR.</jats:p
Characterizing Treatment Resistance in Muscle Invasive Bladder Cancer Using the Chicken Egg Chorioallantoic Membrane Patient-Derived Xenograft Model
BACKGROUND: Non-metastatic muscle invasive urothelial bladder cancer (MIBC) has a poor prognosis and standard of care (SOC) includes neoadjuvant cisplatin-based chemotherapy (NAC) combined with cystectomy. Patients receiving NAC have at best
METHODS: We optimized engraftment conditions for primary MIBC tumors using the CAM-PDX model and tested concordance between cisplatin-based chemotherapy response of patients to matching PDX tumors using tumor growth coupled with immunohistochemistry markers of proliferation and apoptosis. We also tested select kinase inhibitor response on chemotherapy-resistant bladder cancers on the CAM-PDX using tumor growth measurements and immuno-detection of proliferation marker, Ki-67.
RESULTS: Our results show primary, NAC-resistant, MIBC tumors grown on the CAM share histological characteristics along with cisplatin-based chemotherapy resistance observed in the clinic for matched parent human tumor specimens. Patient tumor specimens acquired after chemotherapy treatment (post-NAC) and exhibiting NAC resistance were engrafted successfully on the CAM and displayed decreased tumor growth size and proliferation in response to treatment with a dual EGFR and HER2 inhibitor, but had no significant response to either CDK4/6 or FGFR inhibition.
CONCLUSIONS: Our data suggests concordance between cisplatin-based chemotherapy resistance phenotypes in primary patient tumors and CAM-PDX models. Further, proteogenomic informed kinase inhibitor use on MIBC CAM-PDX models suggests a benefit from integration of rapid in vivo testing of novel therapeutics to inform more complex, pre-clinical mouse PDX experiments for more effective clinical trial design aimed at achieving optimal precision medicine for patients with limited treatment options
Overexpression of miR-145-5p inhibits proliferation of prostate cancer cells and reduces SOX2 expression
The studies presented in this manuscript are supported by a grant (108S051) from The Scientific and Technological Research Council of Turkey (TUBITAK).We aimed to perform functional analysis of miR-145-5p in prostate cancer (PCa) cells and to identify targets of miR-145-5p for understanding its role in PCa pathogenesis. PC3, DU145, LNCaP PCa, and PNT1a nontumorigenic prostate cell lines were utilized for functional analysis of miR-145-5p. Its overexpression caused inhibition of proliferation through apoptosis and reduced migration in PCa cells. SOX2 expression was significantly decreased in both mRNA and protein level in miR-145-5p-overexpressed PCa cells. We proposed that miR-145-5p, being an important regulator of SOX2, carries a crucial role in PCa tumorigenesis.Scientific and Technological Research Council of Turkey (TUBITAK) [108S051
- …
