1,294 research outputs found
High prevalence of Sarcocystis calchasi in racing pigeon flocks in Germany
The apicomplexan parasite Sarcocystis calchasi (Coccidia: Eimeriorina: Sarcocystidae) is the causative agent of Pigeon Protozoal Encephalitis (PPE) and infects birds of the orders Columbiformes, Piciformes and Psittaciformes. Accipiter hawks (Aves: Accipitriformes) are the definitive hosts of this parasite. Infections of S. calchasi have been detected in Germany, the United States and Japan. However, the prevalence of the parasite in racing pigeon flocks has not yet been determined. Here, the first cross-sectional prevalence study to investigate S. calchasi in pigeon racing flocks was accomplished including 245 pigeon flocks across Germany. A total of 1,225 muscle biopsies, were taken between 2012 and 2016 and examined by semi-nested PCR for S. calchasi DNA targeting the ITS gene. Additionally, a questionnaire on construction of the aviary as well as management and health status of the flock was conducted. In 27.8% (95% C.I. = 22.3–33.8%) of the flocks, S. calchasi DNA was detected in at least one pigeon. Positive flocks were located in 15 out of 16 federal states. A significant increase of infected racing pigeons was seen in spring. Half-covered or open aviary constructions showed a trend of increase of the prevalence rate, while anti-coccidian treatment and acidified drinking water had no effects. The high prevalence and the geographical distribution of S. calchasi suggest a long-standing occurrence of the parasite in the German racing pigeon population. For pigeons presented with neurological signs or other symptoms possibly related to PPE, S. calchasi should be considered as a potential cause throughout Germany
Accipiter hawks and Common Woodpigeon in Germany
The apicomplexan parasite Sarcocystis calchasi (S. calchasi) triggers pigeon protozoal encephalitis, a neurologic disease in columbids. Accipiter hawks have been identified as the final host, and Columbidae and Psittaciformes as intermediate hosts. In this study, 368 free-ranging Accipiter hawks and 647 free-ranging common woodpigeons were sampled in a country-wide study in order to identify the prevalence of S. calchasi in these populations. A semi-nested PCR specific for S. calchasi tested positive in 7.3% (4.9–10.5) of submitted samples from Accipiter hawks. Juvenile Accipiter hawks (13.7%; 7.7–22.0) had a significantly higher infection rate with S. calchasi than adult Accipiter hawks (5.8%; 2.7–9.3). The prevalence of S. calchasi in common woodpigeons was 3.3% (5.4–9.7). Positive pigeons were identified in 14/16 federal states, and a region-dependency was detected, with higher rates of infection in the eastern parts of Germany. The results of this study suggest that the common woodpigeon is a natural reservoir for S. calchasi. In a study of one region for four consecutive years, an increase in prevalence was not detected. Findings indicate that the parasite is not newly introduced to Germany, but rather long established. The prevalence suggests that there is a substantial risk of S. calchasi infections in other free-ranging as well as captive host species
Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models
Measurements of atmospheric O2/N2 ratios and CO2 concentrations can be combined into a tracer known as atmospheric potential oxygen (APO ≈ O2/N2 + CO2) that is conservative with respect to terrestrial biological activity. Consequently, APO reflects primarily ocean biogeochemistry and atmospheric circulation. Building on the work of Stephens et al. (1998), we present a set of APO observations for the years 1996-2003 with unprecedented spatial coverage. Combining data from the Princeton and Scripps air sampling programs, the data set includes new observations collected from ships in the low-latitude Pacific. The data show a smaller interhemispheric APO gradient than was observed in past studies, and different structure within the hemispheres. These differences appear to be due primarily to real changes in the APO field over time. The data also show a significant maximum in APO near the equator. Following the approach of Gruber et al. (2001), we compare these observations with predictions of APO generated from ocean O2 and CO2 flux fields and forward models of atmospheric transport. Our model predictions differ from those of earlier modeling studies, reflecting primarily the choice of atmospheric transport model (TM3 in this study). The model predictions show generally good agreement with the observations, matching the size of the interhemispheric gradient, the approximate amplitude and extent of the equatorial maximum, and the amplitude and phasing of the seasonal APO cycle at most stations. Room for improvement remains. The agreement in the interhemispheric gradient appears to be coincidental; over the last decade, the true APO gradient has evolved to a value that is consistent with our time-independent model. In addition, the equatorial maximum is somewhat more pronounced in the data than the model. This may be due to overly vigorous model transport, or insufficient spatial resolution in the air-sea fluxes used in our modeling effort. Finally, the seasonal cycles predicted by the model of atmospheric transport show evidence of an excessive seasonal rectifier in the Aleutian Islands and smaller problems elsewhere. Copyright 2006 by the American Geophysical Union
Fluctuations of an Atomic Ledge Bordering a Crystalline Facet
When a high symmetry facet joins the rounded part of a crystal, the step line
density vanishes as sqrt(r) with r denoting the distance from the facet edge.
This means that the ledge bordering the facet has a lot of space to meander as
caused by thermal activation. We investigate the statistical properties of the
border ledge fluctuations. In the scaling regime they turn out to be
non-Gaussian and related to the edge statistics of GUE multi-matrix models.Comment: Version with major revisions -- RevTeX, 4 pages, 2 figure
Coherent, mechanical control of a single electronic spin
The ability to control and manipulate spins via electrical, magnetic and
optical means has generated numerous applications in metrology and quantum
information science in recent years. A promising alternative method for spin
manipulation is the use of mechanical motion, where the oscillation of a
mechanical resonator can be magnetically coupled to a spins magnetic dipole,
which could enable scalable quantum information architectures9 and sensitive
nanoscale magnetometry. To date, however, only population control of spins has
been realized via classical motion of a mechanical resonator. Here, we
demonstrate coherent mechanical control of an individual spin under ambient
conditions using the driven motion of a mechanical resonator that is
magnetically coupled to the electronic spin of a single nitrogen-vacancy (NV)
color center in diamond. Coherent control of this hybrid mechanical/spin system
is achieved by synchronizing pulsed spin-addressing protocols (involving
optical and radiofrequency fields) to the motion of the driven oscillator,
which allows coherent mechanical manipulation of both the population and phase
of the spin via motion-induced Zeeman shifts of the NV spins energy. We
demonstrate applications of this coherent mechanical spin-control technique to
sensitive nanoscale scanning magnetometry.Comment: 6 pages, 4 figure
Clinical reappraisal of the Composite International Diagnostic Interview Screening Scales (CIDI‐SC) in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS)
A clinical reappraisal study was carried out in conjunction with the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS) All‐Army Study (AAS) to evaluate concordance of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM‐IV) diagnoses based on the Composite International Diagnostic Interview Screening Scales (CIDI‐SC) and post‐traumatic stress disorder (PTSD) checklist (PCL) with diagnoses based on independent clinical reappraisal interviews (Structured Clinical Interview for DSM‐IV [SCID]). Diagnoses included: lifetime mania/hypomania, panic disorder, and intermittent explosive disorder; six‐month adult attention‐deficit/hyperactivity disorder; and 30‐day major depressive episode, generalized anxiety disorder, PTSD, and substance (alcohol or drug) use disorder (abuse or dependence). The sample ( n = 460) was weighted for over‐sampling CIDI‐SC/PCL screened positives. Diagnostic thresholds were set to equalize false positives and false negatives. Good individual‐level concordance was found between CIDI‐SC/PCL and SCID diagnoses at these thresholds (area under curve [AUC] = 0.69–0.79). AUC was considerably higher for continuous than dichotomous screening scale scores (AUC = 0.80–0.90), arguing for substantive analyses using not only dichotomous case designations but also continuous measures of predicted probabilities of clinical diagnoses. Copyright © 2013 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102145/1/mpr1398.pd
MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.
Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort
- …
