185 research outputs found

    A peptide derived from TIMP-3 inhibits multiple angiogenic growth factor receptors and tumour growth and inflammatory arthritis in mice

    Get PDF
    The binding of vascular endothelial growth factor (VEGF) to VEGF receptor-2 (VEGFR-2) on the surface of vascular endothelial cells stimulates many steps in the angiogenic pathway. Inhibition of this interaction is proving of value in moderating the neovascularization accompanying age-related macular degeneration and in the treatment of cancer. Tissue inhibitor of metalloproteinases-3 (TIMP-3) has been shown to be a natural VEGFR-2 specific antagonist—an activity that is independent of its ability to inhibit metalloproteinases. In this investigation we localize this activity to the C-terminal domain of the TIMP-3 molecule and characterize a short peptide, corresponding to part of this domain, that not only inhibits all three VEGF-family receptors, but also fibroblast growth factor and platelet-derived growth factor receptors. This multiple-receptor inhibition may explain why the peptide was also seen to be a powerful inhibitor of tumour growth and also a partial inhibitor of arthritic joint inflammation in vivo

    In vitro investigation of silica nanoparticle uptake into human endothelial cells under physiological cyclic stretch

    Get PDF
    BACKGROUND In general the prediction of the toxicity and therapeutic efficacy of engineered nanoparticles in humans is initially determined using in vitro static cell culture assays. However, such test systems may not be sufficient for testing nanoparticles intended for intravenous application. Once injected, these nanoparticles are caught up in the blood stream in vivo and are therefore in continuous movement. Physical forces such as shear stress and cyclic stretch caused by the pulsatile blood flow are known to change the phenotype of endothelial cells which line the luminal side of the vasculature and thus may be able to affect cell-nanoparticle interactions. METHODS In this study we investigated the uptake of amorphous silica nanoparticles in primary endothelial cells (HUVEC) cultured under physiological cyclic stretch conditions (1 Hz, 5% stretch) and compared this to cells in a standard static cell culture system. The toxicity of varying concentrations was assessed using cell viability and cytotoxicity studies. Nanoparticles were also characterized for the induction of an inflammatory response. Changes to cell morphology was evaluated in cells by examining actin and PECAM staining patterns and the amounts of nanoparticles taken up under the different culture conditions by evaluation of intracellular fluorescence. The expression profile of 26 stress-related was determined by microarray analysis. RESULTS The results show that cytotoxicity to endothelial cells caused by silica nanoparticles is not significantly altered under stretch compared to static culture conditions. Nevertheless, cells cultured under stretch internalize fewer nanoparticles. The data indicate that the decrease of nanoparticle content in stretched cells was not due to the induction of cell stress, inflammation processes or an enhanced exocytosis but rather a result of decreased endocytosis. CONCLUSIONS In conclusion, this study shows that while the toxic impact of silica nanoparticles is not altered by stretch this dynamic model demonstrates altered cellular uptake of nanoparticles under physiologically relevant in vitro cell culture models. In particular for the development of nanoparticles for biomedical applications such improved in vitro cell culture models may play a pivotal role in the reduction of animal experiments and development costs

    Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: Comparison with conventional monocultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To date silica nanoparticles (SNPs) play an important role in modern technology and nanomedicine. SNPs are present in various materials (tyres, electrical and thermal insulation material, photovoltaic facilities). They are also used in products that are directly exposed to humans such as cosmetics or toothpaste. For that reason it is of great concern to evaluate the possible hazards of these engineered particles for human health. Attention should primarily be focussed on SNP effects on biological barriers. Accidentally released SNP could, for example, encounter the alveolar-capillary barrier by inhalation. In this study we examined the inflammatory and cytotoxic responses of monodisperse amorphous silica nanoparticles (aSNPs) of 30 nm in size on an <it>in vitro </it>coculture model mimicking the alveolar-capillary barrier and compared these to conventional monocultures.</p> <p>Methods</p> <p>Thus, the epithelial cell line, H441, and the endothelial cell line, ISO-HAS-1, were used in monoculture and in coculture on opposite sides of a filter membrane. Cytotoxicity was evaluated by the MTS assay, detection of membrane integrity (LDH release), and TER (Transepithelial Electrical Resistance) measurement. Additionally, parameters of inflammation (sICAM-1, IL-6 and IL-8 release) and apoptosis markers were investigated.</p> <p>Results</p> <p>Regarding toxic effects (viability, membrane integrity, TER) the coculture model was less sensitive to apical aSNP exposure than the conventional monocultures of the appropriate cells. On the other hand, the <it>in vitro </it>coculture model responded with the release of inflammatory markers in a much more sensitive fashion than the conventional monoculture. At concentrations that were 10-100fold less than the toxic concentrations the apically exposed coculture showed a release of IL-6 and IL-8 to the basolateral side. This may mimic the early inflammatory events that take place in the pulmonary alveoli after aSNP inhalation. Furthermore, a number of apoptosis markers belonging to the intrinsic pathway were upregulated in the coculture following aSNP treatment. Analysis of the individual markers indicated that the cells suffered from DNA damage, hypoxia and ER-stress.</p> <p>Conclusion</p> <p>We present evidence that our <it>in vitro </it>coculture model of the alveolar-capillary barrier is clearly advantageous compared to conventional monocultures in evaluating the extent of damage caused by hazardous material encountering the principle biological barrier in the lower respiratory tract.</p

    Polymeric nanoparticles with neglectable protein corona

    Get PDF
    The current understanding of nanoparticle–protein interactions indicates that they rapidly adsorb proteins upon introduction into a living organism. The formed protein corona determines thereafter identity and fate of nanoparticles in the body. The present study evaluates the protein affinity of three core-crosslinked polymeric nanoparticles with long circulation times, differing in the hydrophilic polymer material forming the particle surface, namely poly(N-2-hydroxypropylmethacrylamide) (pHPMA), polysarcosine (pSar), and poly(ethylene glycol) (PEG). This includes the nanotherapeutic CPC634, which is currently in clinical phase II evaluation. To investigate possible protein corona formation, the nanoparticles are incubated in human blood plasma and separated by asymmetrical flow field-flow fractionation (AF4). Notably, light scattering shows no detectable differences in particle size or polydispersity upon incubation with plasma for all nanoparticles, while in gel electrophoresis, minor amounts of proteins can be detected in the particle fraction. Label-free quantitative proteomics is additionally applied to analyze and quantify the composition of the proteins. It proves that some proteins are enriched, but their concentration is significantly less than one protein per particle. Thus, most of the nanoparticles are not associated with any proteins. Therefore, this work underlines that polymeric nanoparticles can be synthesized, for which a protein corona formation does not take place

    Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes

    Get PDF
    Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes

    Biodegradable Polylactide Supraparticle Powders with Functional Additives for Biomedical Additive Manufacturing

    Get PDF
    Abstract Additive manufacturing, in particular powder bed‐based fabrication processes hold promise to revolutionize biomedical engineering for the ability to provide customized, functional implants, for example as bone replacement materials. However, providing functional powder particles that unify material requirements for biodegradable and bioactive biomaterials and process requirements to enable successful powder bed fusion remains an unmet challenge. Here, a supraparticle‐based approach to create biodegradable poly(lactic acid) and composite powders for the additive manufacturing of bone replacement materials is introduced. Colloidal binary Ca‐SiO2 glasses and hydroxyapatite are incorporated as bioactive functional additives to support the formation of bone‐like calcium phosphate. The supraparticle powders are prepared by a scalable spray‐drying process, which offers control of particle size, shape, and composition. All process‐relevant powder characteristics are analyzed as a function of composition and structure, including flowability, thermal, and melt rheological properties. The optimized supraparticle powders are successfully used in the process of laser powder bed fusion of polymers to prepare macroscopic specimens via additive manufacturing. It is demonstrated that the material combination of the composites provides relevant functional properties, including biodegradation and bioactivity. The process provides a flexible and adjustable toolbox for the design of functional powders toward biomedical additive manufacturing
    corecore