57 research outputs found
Reticulated filaments in cave pool speleothems: microbe or mineral?
We report on a reticulated filament found in modern and fossil cave samples that cannot be correlated to any known microorganism or organism part. These filaments were found in moist environments in five limestone caves (four in New Mexico, U.S.A., one in Tabasco, Mexico), and a basalt lava tube in the Cape Verde Islands. Most of the filaments are fossils revealed by etching into calcitic speleothems but two are on the surface of samples. One hundred eighty individual reticulated filaments were imaged from 16 different samples using scanning electron microscopy. The filaments are up to 75 mm (average 12 mm) long, but all filaments appear broken. These reticulated filaments are elongate, commonly hollow, tubes with an open mesh reminiscent of a fish net or honeycomb. Two different cross-hatched patterns occur; 77% of filaments have hexagonal chambers aligned parallel to the filament and 23% of filaments have diamond-shaped chambers that spiral along the filament. The filaments range from 300 nm to 1000 nm in diameter, but there are two somewhat overlapping populations; one 200–400 nm in size and the other 500–700 nm. Individual chambers range from 40 to 100 nm with 30–40 nm thick walls. Similar morphologies to the cave reticulated filaments do exist in the microbial world, but all can be ruled out due to the absence of silica (diatoms), different size (diatoms, S-layers), or the presence of iron (Leptothrix sp.). Given the wide range of locations that contain reticulated filaments, we speculate that they are a significant cave microorganism albeit with unknown living habits
The rise and fall of cave pearl pools: Highly variable growth, recrystallization and demise of a mine pearl site
A New Unified Model For Cave Pearls: Insights from Cave Pearls in Carlsbad Cavern, New Mexico, U.s.a.
Electron Microprobe Analysis of Complex Y-REE-Ta-Nb-Ti Minerals from the Petaca Pegmatite District, New Mexico
Petrographic investigation of melt and matrix relationships in Chicxulub crater Yaxcopoil-1 brecciated melt rock and melt rock-bearing suevite (846–885m, units 4 and 5)
Insights into the Geomicrobiology of Biovermiculations from Rock Billet Incubation Experiments
Biovermiculations are uniquely patterned organic rich sediment formations found on the walls of caves and other subterranean environments. These distinctive worm-like features are the combined result of physical and biological processes. The diverse microbial communities that inhabit biovermiculations may corrode the host rock, form secondary minerals, and produce biofilms that stabilize the sediment matrix, thus altering cave surfaces and contributing to the formation of these wall deposits. In this study, we incubated basalt, limestone, and monzonite rock billets in biovermiculation mixed natural community enrichments for 468–604 days, and used scanning electron microscopy (SEM) to assess surface textures and biofilms that developed over the course of the experiment. We observed alteration of rock billet surfaces associated with biofilms and microbial filaments, particularly etch pits and other corrosion features in olivine and other silicates, calcite dissolution textures, and the formation of secondary minerals including phosphates, clays, and iron oxides. We identified twelve distinct biofilm morphotypes that varied based on rock type and the drying method used in sample preparation. These corrosion features and microbial structures inform potential biological mechanisms for the alteration of cave walls, and provide insight into possible small-scale macroscopically visible biosignatures that could augment the utility of biovermiculations and similarly patterned deposits for astrobiology and life detection applications
Insights into the Geomicrobiology of Biovermiculations from Rock Billet Incubation Experiments
Biovermiculations are uniquely patterned organic rich sediment formations found on the walls of caves and other subterranean environments. These distinctive worm-like features are the combined result of physical and biological processes. The diverse microbial communities that inhabit biovermiculations may corrode the host rock, form secondary minerals, and produce biofilms that stabilize the sediment matrix, thus altering cave surfaces and contributing to the formation of these wall deposits. In this study, we incubated basalt, limestone, and monzonite rock billets in biovermiculation mixed natural community enrichments for 468–604 days, and used scanning electron microscopy (SEM) to assess surface textures and biofilms that developed over the course of the experiment. We observed alteration of rock billet surfaces associated with biofilms and microbial filaments, particularly etch pits and other corrosion features in olivine and other silicates, calcite dissolution textures, and the formation of secondary minerals including phosphates, clays, and iron oxides. We identified twelve distinct biofilm morphotypes that varied based on rock type and the drying method used in sample preparation. These corrosion features and microbial structures inform potential biological mechanisms for the alteration of cave walls, and provide insight into possible small-scale macroscopically visible biosignatures that could augment the utility of biovermiculations and similarly patterned deposits for astrobiology and life detection applications.</jats:p
- …
