125 research outputs found
Psychosocial interventions for reducing the harmful effects of war and conflict-related violence on young children aged 0-11 years (Protocol)
Towards a Process Domain‐Sensitive Substrate Habitat Model for Sea Lampreys in Michigan Rivers
Habitat mapping is a common and often useful tool in the ecological management of rivers. The complex nature of fluvial processes, however, makes it difficult to predict the reach‐scale distribution of substrate habitat from landscape‐scale covariates. An option is to identify and partition a data set on boundaries of geomorphic process domains, within which the globally complex relationships between landscape, climate, and instream habitat may potentially be approximated by a simpler model. In this study, we used regression trees as a machine learning method for partitioning and identifying useful strata in a geographically extensive substrate habitat model for larvae of the sea lamprey Petromyzon marinus, an invasive and economically harmful species in the Laurentian Great Lakes. We used field survey data from over 5,000 substrate habitat transects collected in 43 watersheds of the Lower Peninsula of Michigan, and we created a geographic database of geographical information systems‐derived covariates that represent the principal geomorphic influences on substrate habitat. We created three trees in which tree splits delineated (1) spatially contiguous units, (2) noncontiguous units defined by values of the covariates, and (3) both contiguous and noncontiguous units. The adjusted R2 values of the three trees were 0.30, 0.30, and 0.32, respectively, and all three trees outperformed a single model fitted to the entire data set and a set of models fitted to each watershed individually. The trees identified useful stratifications of Michigan’s Lower Peninsula, important geomorphic influences on substrate habitat, and variation in the influence of geomorphic processes on substrate habitat across our study region. Conservation and management applications of our model predictions and tree‐based stratifications include sea lamprey population modeling, habitat survey design, and evaluation of dam removal.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141668/1/tafs0313.pd
Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe
The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range
Aging infrastructure creates opportunities for cost-efficient restoration of aquatic ecosystem connectivity
A hallmark of industrialization is the construction of dams for water management and roads for transportation, leading to fragmentation of aquatic ecosystems. Many nations are striving to address both maintenance backlogs and mitigation of environmental impacts as their infrastructure ages. Here, we test whether accounting for road repair needs could offer opportunities to boost conservation efficiency by piggybacking connectivity restoration projects on infrastructure maintenance. Using optimization models to align fish passage restoration sites with likely road repair priorities, we find potential increases in conservation return-on-investment ranging from 17% to 25%. Importantly, these gains occur without compromising infrastructure or conservation priorities; simply communicating openly about objectives and candidate sites enables greater accomplishment at current funding levels. Society embraces both reliable roads and thriving fisheries, so overcoming this coordination challenge should be feasible. Given deferred maintenance crises for many types of infrastructure, there could be widespread opportunities to enhance the cost-effectiveness of conservation investments by coordinating with infrastructure renewal efforts
River ecosystem conceptual models and non‐perennial rivers: A critical review
Conceptual models underpin river ecosystem research. However, current models focus on continuously flowing rivers and few explicitly address characteristics such as flow cessation and drying. The applicability of existing conceptual models to nonperennial rivers that cease to flow (intermittent rivers and ephemeral streams, IRES) has not been evaluated. We reviewed 18 models, finding that they collectively describe main drivers of biogeochemical and ecological patterns and processes longitudinally (upstream-downstream), laterally (channel-riparian-floodplain), vertically (surface water-groundwater), and temporally across local and landscape scales. However, perennial rivers are longitudinally continuous while IRES are longitudinally discontinuous. Whereas perennial rivers have bidirectional lateral connections between aquatic and terrestrial ecosystems, in IRES, this connection is unidirectional for much of the time, from terrestrial-to-aquatic only. Vertical connectivity between surface and subsurface water occurs bidirectionally and is temporally consistent in perennial rivers. However, in IRES, this exchange is temporally variable, and can become unidirectional during drying or rewetting phases. Finally, drying adds another dimension of flow variation to be considered across temporal and spatial scales in IRES, much as flooding is considered as a temporally and spatially dynamic process in perennial rivers. Here, we focus on ways in which existing models could be modified to accommodate drying as a fundamental process that can alter these patterns and processes across spatial and temporal dimensions in streams. This perspective is needed to support river science and management in our era of rapid global change, including increasing duration, frequency, and occurrence of drying.info:eu-repo/semantics/publishedVersio
The CD3-Zeta Chimeric Antigen Receptor Overcomes TCR Hypo-Responsiveness of Human Terminal Late-Stage T Cells
Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1+ CD57+ CD7− phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter
The efficacy of combination treatment with elotuzumab and lenalidomide is dependent on crosstalk between natural killer cells, monocytes and myeloma cells
Patients with refractory relapsed multiple myeloma respond to combination treatment with elotuzumab and lenalidomide. The mechanisms underlying this observation are not fully understood. Furthermore, biomarkers predictive of response have not been identified to date. To address these issues, we used a humanized myeloma mouse model and adoptive transfer of human natural killer (NK) cells to show that elotuzumab and lenalidomide treatment controlled myeloma growth, and this was mediated through CD16 on NK cells. In co-culture studies, we showed that peripheral blood mononuclear cells from a subset of patients with refractory relapsed multiple myeloma were effective killers of OPM2 myeloma cells when treated with elotuzumab and lenalidomide, and this was associated with significantly increased expression of CD54 on OPM2 cells. Furthermore, elotuzumab- and lenalidomide-induced OPM2 cell killing and increased OPM2 CD54 expression were dependent on both monocytes and NK cells, and these effects were not mediated by soluble factors alone. At the transcript level, elotuzumab and lenalidomide treatment significantly increased OPM2 myeloma cell expression of genes for trafficking and adhesion molecules, NK cell activation ligands and antigen presentation molecules. In conclusion, our findings suggest that multiple myeloma patients require elotuzumab- and lenalidomide-mediated upregulation of CD54 on autologous myeloma cells, in combination with NK cells and monocytes to mediate an effective anti-tumor response. Furthermore, our data suggest that increased myeloma cell CD54 expression levels could be a powerful predictive biomarker for response to elotuzumab and lenalidomide treatment
Pet Project or Best Project? Online Decision Support Tools for Prioritizing Barrier Removals in the Great Lakes and Beyond
Structures that block movement of fish through river networks are built to serve a variety of societal needs, including transportation, hydroelectric power, and exclusion of exotic species. Due to their abundance, road crossings and dams reduce the amount of habitat available to fish that migrate from the sea or lakes into rivers to breed. The benefits to fish of removing any particular barrier depends on its location within the river network, its passability to fish, and the relative position of other barriers within the network. Balancing the trade-offs between ecological and societal values makes choosing among potential removal projects difficult. To facilitate prioritization of barrier removals, we developed an online decision support tool (DST) with three functions: (1) view existing barriers at various spatial scales; (2) modify information about barriers, including removal costs; and (3) run optimization models to identify portfolios of removals that provide the greatest amount of habitat access for a given budget. A survey of available DSTs addressing barrier removal prioritization indicates that barrier visualization is becoming widespread but few tools allow dynamic calculation of connectivity metrics, scenario analysis, or optimization. Having these additional functions, our DST enables organizations to develop barrier removal priorities based on
cost-effectiveness in restoring aquatic connectivity
- …
