59 research outputs found
The RMS Charge Radius of the Proton and Zemach Moments
On the basis of recent precise measurements of the electric form factor of
the proton, the Zemach moments, needed as input parameters for the
determination of the proton rms radius from the measurement of the Lamb shift
in muonic hydrogen, are calculated. It turns out that the new moments give an
uncertainty as large as the presently stated error of the recent Lamb shift
measurement of Pohl et al.. De Rujula's idea of a large Zemach moment in order
to reconcile the five standard deviation discrepancy between the muonic Lamb
shift determination and the result of electronic experiments is shown to be in
clear contradiction with experiment. Alternative explanations are touched upon.Comment: 6 pages, 4 figures, final version includes discussion of systematic
and numerical error
Quasi-elastic polarization-transfer measurements on the deuteron in anti-parallel kinematics
We present measurements of the polarization-transfer components in the
H reaction, covering a previously unexplored kinematic
region with large positive (anti-parallel) missing momentum, , up
to 220 MeV, and . These measurements, performed
at the Mainz Microtron (MAMI), were motivated by theoretical calculations which
predict small final-state interaction (FSI) effects in these kinematics, making
them favorable for searching for medium modifications of bound nucleons in
nuclei. We find in this kinematic region that the measured
polarization-transfer components and and their ratio agree with the
theoretical calculations, which use free-proton form factors. Using this, we
establish upper limits on possible medium effects that modify the bound
proton's form factor ratio at the level of a few percent. We also
compare the measured polarization-transfer components and their ratio for H
to those of a free (moving) proton. We find that the universal behavior of
H, He and C in the double ratio
is maintained in the positive
missing-momentum region
The first determination of Generalized Polarizabilities of the proton by a Virtual Compton Scattering experiment
Absolute differential cross sections for the reaction (e+p -> e+p+gamma) have
been measured at a four-momentum transfer with virtuality Q^2=0.33 GeV^2 and
polarization \epsilon = 0.62 in the range 33.6 to 111.5 MeV/c for the momentum
of the outgoing photon in the photon-proton center of mass frame. The
experiment has been performed with the high resolution spectrometers at the
Mainz Microtron MAMI. From the photon angular distributions, two structure
functions which are a linear combination of the generalized polarizabilities
have been determined for the first time.Comment: 4 pages, 3 figure
Circulating microparticles: square the circle
Background: The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions: Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes
Gauged Linear Sigma Models for toroidal orbifold resolutions
Toroidal orbifolds and their resolutions are described within the framework
of (2,2) Gauged Linear Sigma Models (GLSMs). Our procedure describes two-tori
as hypersurfaces in (weighted) projective spaces. The description is chosen
such that the orbifold singularities correspond to the zeros of their
homogeneous coordinates. The individual orbifold singularities are resolved
using a GLSM guise of non-compact toric resolutions, i.e. replacing discrete
orbifold actions by Abelian worldsheet gaugings. Given that we employ the same
global coordinates for both the toroidal orbifold and its resolutions, our GLSM
formalism confirms the gluing procedure on the level of divisors discussed by
Lust et al. Using our global GLSM description we can study the moduli space of
such toroidal orbifolds as a whole. In particular, changes in topology can be
described as phase transitions of the underlying GLSM. Finally, we argue that
certain partially resolvable GLSMs, in which a certain number of fixed points
can never be resolved, might be useful for the study of mini-landscape orbifold
MSSMs.Comment: 71 pages, 2 figure
Increased thermal stabilization of polymer photovoltaic cells with oligomeric PCBM
The first oligomerisation of phenyl-C61-butyric acid methyl ester (PCBM) using a facile atom transfer radical addition polymerization (ATRAP) and its exploitation for organic photovoltaic devices is described. Oligo{(phenyl-C61-butyric acid methyl ester)-alt-[1,4-bis(bromomethyl)-2,5-bis(octyloxy)benzene]} (OPCBMMB) shows opto-electronic properties equivalent to those of PCBM but has a higher glass transition temperature. When mixed with various band gap semiconducting polymers, OPCBMMB delivers performances similar to PCBM but with an enhanced stabilization of the bulk heterojunction in photovoltaic devices on plastic substrates under thermal stress, regardless of the degree of crystallinity of the polymer and without changing opto-electronic properties
SHOX2 DNA Methylation is a Biomarker for the diagnosis of lung cancer based on bronchial aspirates
<p>Abstract</p> <p>Background</p> <p>This study aimed to show that SHOX2 DNA methylation is a tumor marker in patients with suspected lung cancer by using bronchial fluid aspirated during bronchoscopy. Such a biomarker would be clinically valuable, especially when, following the first bronchoscopy, a final diagnosis cannot be established by histology or cytology. A test with a low false positive rate can reduce the need for further invasive and costly procedures and ensure early treatment.</p> <p>Methods</p> <p>Marker discovery was carried out by differential methylation hybridization (DMH) and real-time PCR. The real-time PCR based HeavyMethyl technology was used for quantitative analysis of DNA methylation of SHOX2 using bronchial aspirates from two clinical centres in a case-control study. Fresh-frozen and Saccomanno-fixed samples were used to show the tumor marker performance in different sample types of clinical relevance.</p> <p>Results</p> <p>Valid measurements were obtained from a total of 523 patient samples (242 controls, 281 cases). DNA methylation of SHOX2 allowed to distinguish between malignant and benign lung disease, i.e. abscesses, infections, obstructive lung diseases, sarcoidosis, scleroderma, stenoses, at high specificity (68% sensitivity [95% CI 62-73%], 95% specificity [95% CI 91-97%]).</p> <p>Conclusions</p> <p>Hypermethylation of SHOX2 in bronchial aspirates appears to be a clinically useful tumor marker for identifying subjects with lung carcinoma, especially if histological and cytological findings after bronchoscopy are ambiguous.</p
- …
