1,362 research outputs found

    A security proof of continuous-variable QKD using three coherent states

    Get PDF
    We introduce a ternary quantum key distribution (QKD) protocol and asymptotic security proof based on three coherent states and homodyne detection. Previous work had considered the binary case of two coherent states and here we nontrivially extend this to three. Our motivation is to leverage the practical benefits of both discrete and continuous (Gaussian) encoding schemes creating a best-of-both-worlds approach; namely, the postprocessing of discrete encodings and the hardware benefits of continuous ones. We present a thorough and detailed security proof in the limit of infinite signal states which allows us to lower bound the secret key rate. We calculate this is in the context of collective eavesdropping attacks and reverse reconciliation postprocessing. Finally, we compare the ternary coherent state protocol to other well-known QKD schemes (and fundamental repeaterless limits) in terms of secret key rates and loss.Comment: Close to the published versio

    A Planetary Companion to gamma Cephei A

    Full text link
    We report on the detection of a planetary companion in orbit around the primary star of the binary system γ\gamma Cephei. High precision radial velocity measurements using 4 independent data sets spanning the time interval 1981--2002 reveal long-lived residual radial velocity variations superimposed on the binary orbit that are coherent in phase and amplitude with a period or 2.48 years (906 days) and a semi-amplitude of 27.5 m s1^{-1}. We performed a careful analysis of our Ca II H & K S-index measurements, spectral line bisectors, and {\it Hipparcos} photometry. We found no significant variations in these quantities with the 906-d period. We also re-analyzed the Ca II λ\lambda8662 {\AA} measurements of Walker et al. (1992) which showed possible periodic variations with the ``planet'' period when first published. This analysis shows that periodic Ca II equivalent width variations were only present during 1986.5 -- 1992 and absent during 1981--1986.5. Furthermore, a refined period for the Ca II λ\lambda8662 {\AA} variations is 2.14 yrs, significantly less than residual radial velocity period. The most likely explanation of the residual radial velocity variations is a planetary mass companion with MM sin ii = 1.7 MJupiterM_{Jupiter} and an orbital semi-major axis of a2a_2 == 2.13 AU. This supports the planet hypothesis for the residual radial velocity variations for γ\gamma Cep first suggested by Walker et al. (1992). With an estimated binary orbital period of 57 years γ\gamma Cep is the shortest period binary system in which an extrasolar planet has been found. This system may provide insights into the relationship between planetary and binary star formation.Comment: 19 pages, 15 figures, accepted in Ap. J. Includes additional data and improved orbital solutio

    Differential Behavior on Skill and Chance Tasks as a Function of Perceived Locus of Control

    Get PDF
    This investigation was designed to examine differences in behavior that may exist between internals and externals on skill and chance tasks. Since internals should be more motivated in a skill task, it was hypothesized that they would show more trials to extinction, more frustration, and more arousal in acquisition and extinction on the skill task than externals. Since externals should be more motivated on a chance task, it was hypothesized that they would show more trials to extinction, more frustration, and more arousal in acquisition and extinction on the chance task than internals. Subjects were pre-selected on the basis of their scores on the James I-E Scale to form the internal, internal-external, and external groups. The skill and chance tasks were the Skye apparatus and a card guessing task, respectively. Frustration was measured by the Zaks and Walters Aggression Scale and arousal by the plethysmograph. Results were in the predicted direction for all of the hypotheses except one. Internal females in the skill task did not show greater arousal during extinction than external females. The following hypotheses were supported: (I) internals had more trials to extinction than externals in the skill task, (2) externals had more trials to extinction than internals in the chance task, (3) externals showed greater arousal in acquisition than internals in the chance task, (4) external males showed greater arousal in extinction than internal males in the chance task, and (5) external females showed greater arousal in extinction than internal females in the chance task

    The Benchmark Ultracool Subdwarf HD 114762B: A Test of Low-Metallicity Atmospheric and Evolutionary Models

    Full text link
    We present a near-infrared spectroscopic study of HD 114762B, the latest-type metal-poor companion discovered to date and the only ultracool subdwarf with a known metallicity, inferred from the primary star to be [Fe/H] = -0.7. We obtained a medium-resolution Keck/OSIRIS J-band spectrum and a low-resolution IRTF/SpeX 0.8-2.4 um spectrum of HD 114762B. HD 114762B exhibits spectral features common to both late-type dwarfs and subdwarfs, and we assign it a spectral type of d/sdM9 +/- 1. We use a Monte Carlo technique to fit PHOENIX/GAIA synthetic spectra to the observations, accounting for the coarsely-gridded nature of the models. Fits to the entire OSIRIS J-band and to the metal-sensitive J-band atomic absorption features (Fe I, K I, and Al I lines) yield model parameters that are most consistent with the metallicity of the primary star and the high surface gravity expected of old late-type objects. The effective temperatures and radii inferred from the model atmosphere fitting broadly agree with those predicted by the evolutionary models of Chabrier & Baraffe, and the model color-absolute magnitude relations accurately predict the metallicity of HD 114762B. We conclude that current low-mass, mildly metal-poor atmospheric and evolutionary models are mutually consistent for spectral fits to medium-resolution J-band spectra of HD 114762B, but are inconsistent for fits to low-resolution near-infrared spectra of mild subdwarfs. Finally, we develop a technique for estimating distances to ultracool subdwarfs based on a single near-infrared spectrum. We show that this "spectroscopic parallax" method enables distance estimates accurate to < 10% of parallactic distances for ultracool subdwarfs near the hydrogen burning minimum mass. (abridged)Comment: Accepted by ApJ; 23 pages, 20 figure

    A human embryonic kidney 293T cell line mutated at the Golgi -mannosidase II locus

    Get PDF
    Disruption of Golgi -mannosidase II activity can result in type II congenital dyserythropoietic anemia and can induce lupus-like autoimmunity in mice. Here, we isolate a mutant human embryonic kidney (HEK) 293T cell line, called Lec36, that displays sensitivity to ricin that lies between the parental HEK 293T cells, whose secreted and membrane-expressed proteins are dominated by complex-type glycosylation, and 293S Lec1 cells, which only produce oligomannose-type N-linked glycans. The stem cell marker, 19A, was transiently expressed in the HEK 293T Lec36 cells, and in parental HEK 293T cells with and without the potent Golgi -mannosidase II inhibitor, swainsonine. Negative-ion nano-electrospray ionization mass spectra of the 19A N-linked glycans from HEK 293T Lec36 and swainsonine-treated HEK 293T cells were qualitatively indistinguishable and, as shown by collision-induced dissociation spectra, dominated by hybrid-type glycosylation. Nucleotide sequencing revealed mutations in each allele of MAN2A1, the gene encoding Golgi -mannosidase II: a point mutation in one allele mapping to the active site and an in-frame deletion of twelve-nucleotides in the other. Expression of wild-type but not the mutant MAN2A1 alleles in Lec36 cells restored processing of the 19A reporter glycoprotein to complex-type glycosylation. The Lec36 cell line will be useful for expressing therapeutic glycoproteins with hybrid-type glycans and provides a sensitive host for detecting mutations in human MAN2A1 causing type II congenital dyserythropoietic anemia

    The Extrasolar Planet epsilon Eridani b - Orbit and Mass

    Full text link
    Hubble Space Telescope observations of the nearby (3.22 pc), K2 V star epsilon Eridani have been combined with ground-based astrometric and radial velocity data to determine the mass of its known companion. We model the astrometric and radial velocity measurements simultaneously to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size. Because of the long period of the companion, \eps b, we extend our astrometric coverage to a total of 14.94 years (including the three year span of the \HST data) by including lower-precision ground-based astrometry from the Allegheny Multichannel Astrometric Photometer. Radial velocities now span 1980.8 -- 2006.3. We obtain a perturbation period, P = 6.85 +/- 0.03 yr, semi-major axis, alpha =1.88 +/- 0.20 mas, and inclination i = 30.1 +/- 3.8 degrees. This inclination is consistent with a previously measured dust disk inclination, suggesting coplanarity. Assuming a primary mass M_* = 0.83 M_{\sun}, we obtain a companion mass M = 1.55 +/- 0.24 M_{Jup}. Given the relatively young age of epsilon Eri (~800 Myr), this accurate exoplanet mass and orbit can usefully inform future direct imaging attempts. We predict the next periastron at 2007.3 with a total separation, rho = 0.3 arcsec at position angle, p.a. = -27 degrees. Orbit orientation and geometry dictate that epsilon Eri b will appear brightest in reflected light very nearly at periastron. Radial velocities spanning over 25 years indicate an acceleration consistent with a Jupiter-mass object with a period in excess of 50 years, possibly responsible for one feature of the dust morphology, the inner cavity

    A Search for Multi-Planet Systems Using the Hobby-Eberly Telescope

    Full text link
    Extrasolar multiple-planet systems provide valuable opportunities for testing theories of planet formation and evolution. The architectures of the known multiple-planet systems demonstrate a fascinating level of diversity, which motivates the search for additional examples of such systems in order to better constrain their formation and dynamical histories. Here we describe a comprehensive investigation of 22 planetary systems in an effort to answer three questions: 1) Are there additional planets? 2) Where could additional planets reside in stable orbits? and 3) What limits can these observations place on such objects? We find no evidence for additional bodies in any of these systems; indeed, these new data do not support three previously announced planets (HD 20367b: Udry et al. 2003, HD 74156d: Bean et al. 2008, and 47 UMa c: Fischer et al. 2002). The dynamical simulations show that nearly all of the 22 systems have large regions in which additional planets could exist in stable orbits. The detection-limit computations indicate that this study is sensitive to close-in Neptune-mass planets for most of the systems targeted. We conclude with a discussion on the implications of these non-detections.Comment: Accepted to ApJS. Includes 39 pages of radial-velocity data table

    Systems Analysis for a Venus Aerocapture Mission

    Get PDF
    Previous high level analysis has indicated that significant mass savings may be possible for planetary science missions if aerocapture is employed to place a spacecraft in orbit. In 2001 the In-Space Propulsion program identified aerocapture as one of the top three propulsion technologies for planetary exploration but that higher fidelity analysis was required to verify the favorable results and to determine if any supporting technology gaps exist that would enable or enhance aerocapture missions. A series of three studies has been conducted to assess, from an overall system point of view, the merit of using aerocapture at Titan, Neptune and Venus. These were chosen as representative of a moon with an atmosphere, an outer giant gas planet and an inner planet. The Venus mission, based on desirable science from plans for Solar System Exploration and Principal Investigator proposals, to place a spacecraft in a 300km polar orbit was examined and the details of the study are presented in this paper

    The Platycerus (Coleoptera, Lucanidae) of California, with the Recognition of Platycerus cribripennis Van Dyke as a Valid Species

    Get PDF
    Th e status of Platycerus cribripennis Van Dyke, generally treated as a synonym of P. marginalis Casey, has been unclear. Here we recognize and redescribe P. cribripennis, which is endemic to the coastal mountains of California, as a valid species due to its unique morphology. A key to the Platycerus of California is presented, and the distributions of the recognized species are discussed
    corecore