56 research outputs found
The genome of the jellyfish Aurelia and the evolution of animal complexity
We present the genome of the moon jellyfish Aurelia, a genome from a cnidarian with a medusa life stage. Our analyses suggest that gene gain and loss in Aurelia is comparable to what has been found in its morphologically simpler relatives—the anthozoan corals and sea anemones. RNA sequencing analysis does not support the hypothesis that taxonomically restricted (orphan) genes play an oversized role in the development of the medusa stage. Instead, genes broadly conserved across animals and eukaryotes play comparable roles throughout the life cycle. All life stages of Aurelia are significantly enriched in the expression of genes that are hypothesized to interact in protein networks found in bilaterian animals. Collectively, our results suggest that increased life cycle complexity in Aurelia does not correlate with an increased number of genes. This leads to two possible evolutionary scenarios: either medusozoans evolved their complex medusa life stage (with concomitant shifts into new ecological niches) primarily by re-working genetic pathways already present in the last common ancestor of cnidarians, or the earliest cnidarians had a medusa life stage, which was subsequently lost in the anthozoans. While we favour the earlier hypothesis, the latter is consistent with growing evidence that many of the earliest animals were more physically complex than previously hypothesized
Recommended from our members
Functional diversification within the heme-binding split-barrel family
Due to neofunctionalization, a single fold can be identified in multiple proteins that have distinct molecular functions. Depending on the time that has passed since gene duplication and the number of mutations, the sequence similarity between functionally divergent proteins can be relatively high, eroding the value of sequence similarity as the sole tool for accurately annotating the function of uncharacterized homologs. Here, we combine bioinformatic approaches with targeted experimentation to reveal a large multifunctional family of putative enzymatic and nonenzymatic proteins involved in heme metabolism. This family (homolog of HugZ (HOZ)) is embedded in the "FMN-binding split barrel" superfamily and contains separate groups of proteins from prokaryotes, plants, and algae, which bind heme and either catalyze its degradation or function as nonenzymatic heme sensors. In prokaryotes these proteins are often involved in iron assimilation, whereas several plant and algal homologs are predicted to degrade heme in the plastid or regulate heme biosynthesis. In the plant Arabidopsis thaliana, which contains two HOZ subfamilies that can degrade heme in vitro (HOZ1 and HOZ2), disruption of AtHOZ1 (AT3G03890) or AtHOZ2A (AT1G51560) causes developmental delays, pointing to important biological roles in the plastid. In the tree Populus trichocarpa, a recent duplication event of a HOZ1 ancestor has resulted in localization of a paralog to the cytosol. Structural characterization of this cytosolic paralog and comparison to published homologous structures suggests conservation of heme-binding sites. This study unifies our understanding of the sequence-structure-function relationships within this multilineage family of heme-binding proteins and presents new molecular players in plant and bacterial heme metabolism
Recommended from our members
Two related families of metal transferases, ZNG1 and ZNG2, are involved in acclimation to poor Zn nutrition in Arabidopsis
Metal homeostasis has evolved to tightly modulate the availability of metals within the cell, avoiding cytotoxic interactions due to excess and protein inactivity due to deficiency. Even in the presence of homeostatic processes, however, low bioavailability of these essential metal nutrients in soils can negatively impact crop health and yield. While research has largely focused on how plants assimilate metals, acclimation to metal-limited environments requires a suite of strategies that are not necessarily involved in metal transport across membranes. The identification of these mechanisms provides a new opportunity to improve metal-use efficiency and develop plant foodstuffs with increased concentrations of bioavailable metal nutrients. Here, we investigate the function of two distinct subfamilies of the nucleotide-dependent metallochaperones (NMCs), named ZNG1 and ZNG2, that are found in plants, using Arabidopsis thaliana as a reference organism. AtZNG1 (AT1G26520) is an ortholog of human and fungal ZNG1, and like its previously characterized eukaryotic relatives, localizes to the cytosol and physically interacts with methionine aminopeptidase type I (AtMAP1A). Analysis of AtZNG1, AtMAP1A, AtMAP2A, and AtMAP2B transgenic mutants are consistent with the role of Arabidopsis ZNG1 as a Zn transferase for AtMAP1A, as previously described in yeast and zebrafish. Structural modeling reveals a flexible cysteine-rich loop that we hypothesize enables direct transfer of Zn from AtZNG1 to AtMAP1A during GTP hydrolysis. Based on proteomics and transcriptomics, loss of this ancient and conserved mechanism has pleiotropic consequences impacting the expression of hundreds of genes, including those involved in photosynthesis and vesicle transport. Members of the plant-specific family of NMCs, ZNG2A1 (AT1G80480) and ZNG2A2 (AT1G15730), are also required during Zn deficiency, but their target protein(s) remain to be discovered. RNA-seq analyses reveal wide-ranging impacts across the cell when the genes encoding these plastid-localized NMCs are disrupted
The genome of the jellyfish Aurelia and the evolution of animal complexity
We present the genome of the moon jellyfish Aurelia, a genome from a cnidarian with a medusa life stage. Our analyses suggest that gene gain and loss in Aurelia is comparable to what has been found in its morphologically simpler relatives—the anthozoan corals and sea anemones. RNA sequencing analysis does not support the hypothesis that taxonomically restricted (orphan) genes play an oversized role in the development of the medusa stage. Instead, genes broadly conserved across animals and eukaryotes play comparable roles throughout the life cycle. All life stages of Aurelia are significantly enriched in the expression of genes that are hypothesized to interact in protein networks found in bilaterian animals. Collectively, our results suggest that increased life cycle complexity in Aurelia does not correlate with an increased number of genes. This leads to two possible evolutionary scenarios: either medusozoans evolved their complex medusa life stage (with concomitant shifts into new ecological niches) primarily by re-working genetic pathways already present in the last common ancestor of cnidarians, or the earliest cnidarians had a medusa life stage, which was subsequently lost in the anthozoans. While we favour the earlier hypothesis, the latter is consistent with growing evidence that many of the earliest animals were more physically complex than previously hypothesized
Identification of Synaptic Targets of Drosophila Pumilio
Drosophila Pumilio (Pum) protein is a translational regulator involved in embryonic patterning and germline development. Recent findings demonstrate that Pum also plays an important role in the nervous system, both at the neuromuscular junction (NMJ) and in long-term memory formation. In neurons, Pum appears to play a role in homeostatic control of excitability via down regulation of para, a voltage gated sodium channel, and may more generally modulate local protein synthesis in neurons via translational repression of eIF-4E. Aside from these, the biologically relevant targets of Pum in the nervous system remain largely unknown. We hypothesized that Pum might play a role in regulating the local translation underlying synapse-specific modifications during memory formation. To identify relevant translational targets, we used an informatics approach to predict Pum targets among mRNAs whose products have synaptic localization. We then used both in vitro binding and two in vivo assays to functionally confirm the fidelity of this informatics screening method. We find that Pum strongly and specifically binds to RNA sequences in the 3′UTR of four of the predicted target genes, demonstrating the validity of our method. We then demonstrate that one of these predicted target sequences, in the 3′UTR of discs large (dlg1), the Drosophila PSD95 ortholog, can functionally substitute for a canonical NRE (Nanos response element) in vivo in a heterologous functional assay. Finally, we show that the endogenous dlg1 mRNA can be regulated by Pumilio in a neuronal context, the adult mushroom bodies (MB), which is an anatomical site of memory storage
MaizeCODE reveals bi-directionally expressed enhancers that harbor molecular signatures of maize domestication
Modern maize was domesticated from Teosinte parviglumis, with subsequent introgressions from Teosinte mexicana, yielding increased kernel row number, loss of the hard fruit case and dissociation from the cob upon maturity, as well as fewer tillers. Molecular approaches have identified several transcription factors involved in the development of these traits, yet revealed that a complex regulatory network is at play. MaizeCODE deploys ENCODE strategies to catalog regulatory regions in the maize genome, generating histone modification and transcription factor ChIP-seq in parallel with transcriptomics datasets in 5 tissues of 3 inbred lines which span the phenotypic diversity of maize, as well as the teosinte inbred TIL11. Integrated analysis of these datasets resulted in the identification of a comprehensive set of regulatory regions in each inbred, and notably of distal enhancers which were differentiated from gene bodies by their lack of H3K4me1. Many of these distal enhancers expressed non- coding enhancer RNAs bi-directionally, reminiscent of “super enhancers” in animal genomes. We show that pollen grains are the most differentiated tissue at the transcriptomic level, and share features with endosperm that may be related to McClintock’s chromosome breakage- fusion-bridge cycle. Conversely, ears have the least conservation between maize and teosinte, both in gene expression and within regulatory regions, reflecting conspicuous morphological differences selected during domestication. The identification of molecular signatures of domestication in transcriptional regulatory regions provides a framework for directed breeding strategies in maize.This preprint is made available through bioRxiv at doi:https://doi.org/10.1101/2024.02.22.581585. Copyright 2024, The Authors. It is made available under a CC-BY 4.0 International license
Essential function of nitric oxide synthase in Drosophila
Nitric oxide (NO), produced by NO synthases (NOS), is a short-lived intra- and transcellular messenger that regulates many physiological functions in vertebrates and invertebrates (e.g., blood pressure, muscle contraction, innate immunity, cell division and differentiation, response to hypoxia, and memory formation [1]). Given its numerous functions, it might be expected that a lack of NOS activity would be lethal for the developing organism. However, such an indispensable role for NO in development has not yet been demonstrated. A genetic analysis of NO function in vertebrates is complicated by the presence of three NOS genes. Mice with a homozygous ablation of any single NOS gene are viable, animals with two NOS genes knocked out show drastically reduced viability and triple knockout animals have not yet been generated 2., 3., 4., 5. and 6.
Charakteristiken einer netzgestützten wissenschaftlichen Kommunikation und Umsetzung in Infrastruktur und Publikationsformen
Neue Formen der wissenschaftlichen Kommunikation basieren auf Fortschritten in den Informations- und Kommunikationstechnologien. Das dadurch mögliche kollaborative wissenschaftliche Arbeiten liefert Ergebnisse, die in vielfältigen Formaten, als Text, Simulationsdaten oder multimediale Elemente vorliegen. Daraus ergeben sich besondere Anforderungen an Publikations- und Kommunikatonsinfrastrukturen, wie Interoperabilität, Repräsentation, Verteilung und Archivierung derartiger komplexer digitaler Objekte. Mit der Initiative Digital Peer Publishing existiert eine Infrastruktur für das Publizieren in elektronischen Zeitschriften. Dieses Publikationsformat erlaubt neben einem schnellen Wissenstransfer eine umfassende Repräsentation wissenschaftlicher Ergebnisse. Das Journal of Virtual Reality and Broadcasting als Teil dieser Initiative zeigt am Beispiel des elektronischen Publikationsprozesses den Stand der Wissensvernetzung in seiner Community, sowie aktuelle Entwicklungen um die Erweiterung innovativer Funktionen
- …
