56 research outputs found

    Towards Disaggregation-Native Data Streaming between Devices

    Full text link
    Disaggregation is an ongoing trend to increase flexibility in datacenters. With interconnect technologies like CXL, pools of CPUs, accelerators, and memory can be connected via a datacenter fabric. Applications can then pick from those pools the resources necessary for their specific workload. However, this vision becomes less clear when we consider data movement. Workloads often require data to be streamed through chains of multiple devices, but typically, these data streams physically do not directly flow device-to-device, but are staged in memory by a CPU hosting device protocol logic. We show that augmenting devices with a disaggregation-native and device-independent data streaming facility can improve processing latencies by enabling data flows directly between arbitrary devices.Comment: Presented at the 3rd Workshop on Heterogeneous Composable and Disaggregated Systems (HCDS 2024

    Slice-Level Trading of Quality and Performance in Decoding H.264 Video: Slice-basiertes Abwägen zwischen Qualität und Leistung beim Dekodieren von H.264-Video

    Get PDF
    When a demanding video decoding task requires more CPU resources then available, playback degrades ungracefully today: The decoder skips frames selected arbitrarily or by simple heuristics, which is noticed by the viewer as jerky motion in the good case or as images completely breaking up in the bad case. The latter can happen due to missing reference frames. This thesis provides a way to schedule individual decoding tasks based on a cost for performance trade. Therefore, I will present a way to preprocess a video, generating estimates for the cost in terms of execution time and the performance in terms of perceived visual quality. The granularity of the scheduling decision is a single slice, which leads to a much more fine-grained approach than dealing with entire frames. Together with an actual scheduler implementation that uses the generated estimates, this work allows for higher perceived quality video playback in case of CPU overload.Wenn eine anspruchsvolle Video-Dekodierung mehr Prozessor-Ressourcen benötigt, als verfügbar sind, dann verschlechtert sich die Abspielqualität mit aktuellen Methoden drastisch: Willkürlich oder mit einfachen Heuristiken ausgewählten Bilder werden nicht dekodiert. Diese Auslassung nimmt der Betrachter im günstigsten Fall nur als ruckelnde Bewegung wahr, im ungünstigen Fall jedoch als komplettes Zusammenbrechen nachfolgender Bilder durch Folgefehler im Dekodierprozess. Meine Arbeit ermöglicht es, einzelne Teilaufgaben des Dekodierprozesses anhand einer Kosten-Nutzen-Analyse einzuplanen. Dafür ermittle ich die Kosten im Sinne von Rechenzeitbedarf und den Nutzen im Sinne von visueller Qualität für einzelne Slices eines H.264 Videos. Zusammen mit einer Implementierung eines Schedulers, der diese Werte nutzt, erlaubt meine Arbeit höhere vom Betrachter wahrgenommene Videoqualität bei knapper Prozessorzeit

    Practical Real-Time with Look-Ahead Scheduling

    Get PDF
    In my dissertation, I present ATLAS — the Auto-Training Look-Ahead Scheduler. ATLAS improves service to applications with regard to two non-functional properties: timeliness and overload detection. Timeliness is an important requirement to ensure user interface responsiveness and the smoothness of multimedia operations. Overload can occur when applications ask for more computation time than the machine can offer. Interactive systems have to handle overload situations dynamically at runtime. ATLAS provides timely service to applications, accessible through an easy-to-use interface. Deadlines specify timing requirements, workload metrics describe jobs. ATLAS employs machine learning to predict job execution times. Deadline misses are detected before they occur, so applications can react early.:1 Introduction 2 Anatomy of a Desktop Application 3 Real Simple Real-Time 4 Execution Time Prediction 5 System Scheduler 6 Timely Service 7 The Road Ahead Bibliography Inde

    CoRD: Converged RDMA Dataplane for High-Performance Clouds

    Full text link
    High-performance networking is often characterized by kernel bypass which is considered mandatory in high-performance parallel and distributed applications. But kernel bypass comes at a price because it breaks the traditional OS architecture, requiring applications to use special APIs and limiting the OS control over existing network connections. We make the case, that kernel bypass is not mandatory. Rather, high-performance networking relies on multiple performance-improving techniques, with kernel bypass being the least effective. CoRD removes kernel bypass from RDMA networks, enabling efficient OS-level control over RDMA dataplane.Comment: 11 page

    Probabilistic Analysis of Low-Criticality Execution

    Get PDF
    The mixed-criticality toolbox promises system architects a powerful framework for consolidating real-time tasks with different safety properties on a single computing platform. Thanks to the research efforts in the mixed-criticality field, guarantees provided to the highest criticality level are well understood. However, lower-criticality job execution depends on the condition that all high-criticality jobs complete within their more optimistic low-criticality execution time bounds. Otherwise, no guarantees are made. In this paper, we add to the mixed-criticality toolbox by providing a probabilistic analysis method for low-criticality tasks. While deterministic models reduce task behavior to constant numbers, probabilistic analysis captures varying runtime behavior. We introduce a novel algorithmic approach for probabilistic timing analysis, which we call symbolic scheduling. For restricted task sets, we also present an analytical solution. We use this method to calculate per-job success probabilities for low-criticality tasks, in order to quantify, how low-criticality tasks behave in case of high-criticality jobs overrunning their optimistic low-criticality reservation

    Practical Real-Time with Look-Ahead Scheduling

    Get PDF
    In my dissertation, I present ATLAS — the Auto-Training Look-Ahead Scheduler. ATLAS improves service to applications with regard to two non-functional properties: timeliness and overload detection. Timeliness is an important requirement to ensure user interface responsiveness and the smoothness of multimedia operations. Overload can occur when applications ask for more computation time than the machine can offer. Interactive systems have to handle overload situations dynamically at runtime. ATLAS provides timely service to applications, accessible through an easy-to-use interface. Deadlines specify timing requirements, workload metrics describe jobs. ATLAS employs machine learning to predict job execution times. Deadline misses are detected before they occur, so applications can react early.:1 Introduction 2 Anatomy of a Desktop Application 3 Real Simple Real-Time 4 Execution Time Prediction 5 System Scheduler 6 Timely Service 7 The Road Ahead Bibliography Inde

    Slice-Level Trading of Quality and Performance in Decoding H.264 Video: Slice-basiertes Abwägen zwischen Qualität und Leistung beim Dekodieren von H.264-Video

    Get PDF
    When a demanding video decoding task requires more CPU resources then available, playback degrades ungracefully today: The decoder skips frames selected arbitrarily or by simple heuristics, which is noticed by the viewer as jerky motion in the good case or as images completely breaking up in the bad case. The latter can happen due to missing reference frames. This thesis provides a way to schedule individual decoding tasks based on a cost for performance trade. Therefore, I will present a way to preprocess a video, generating estimates for the cost in terms of execution time and the performance in terms of perceived visual quality. The granularity of the scheduling decision is a single slice, which leads to a much more fine-grained approach than dealing with entire frames. Together with an actual scheduler implementation that uses the generated estimates, this work allows for higher perceived quality video playback in case of CPU overload.Wenn eine anspruchsvolle Video-Dekodierung mehr Prozessor-Ressourcen benötigt, als verfügbar sind, dann verschlechtert sich die Abspielqualität mit aktuellen Methoden drastisch: Willkürlich oder mit einfachen Heuristiken ausgewählten Bilder werden nicht dekodiert. Diese Auslassung nimmt der Betrachter im günstigsten Fall nur als ruckelnde Bewegung wahr, im ungünstigen Fall jedoch als komplettes Zusammenbrechen nachfolgender Bilder durch Folgefehler im Dekodierprozess. Meine Arbeit ermöglicht es, einzelne Teilaufgaben des Dekodierprozesses anhand einer Kosten-Nutzen-Analyse einzuplanen. Dafür ermittle ich die Kosten im Sinne von Rechenzeitbedarf und den Nutzen im Sinne von visueller Qualität für einzelne Slices eines H.264 Videos. Zusammen mit einer Implementierung eines Schedulers, der diese Werte nutzt, erlaubt meine Arbeit höhere vom Betrachter wahrgenommene Videoqualität bei knapper Prozessorzeit

    Practical Real-Time with Look-Ahead Scheduling

    No full text
    In my dissertation, I present ATLAS — the Auto-Training Look-Ahead Scheduler. ATLAS improves service to applications with regard to two non-functional properties: timeliness and overload detection. Timeliness is an important requirement to ensure user interface responsiveness and the smoothness of multimedia operations. Overload can occur when applications ask for more computation time than the machine can offer. Interactive systems have to handle overload situations dynamically at runtime. ATLAS provides timely service to applications, accessible through an easy-to-use interface. Deadlines specify timing requirements, workload metrics describe jobs. ATLAS employs machine learning to predict job execution times. Deadline misses are detected before they occur, so applications can react early.:1 Introduction 2 Anatomy of a Desktop Application 3 Real Simple Real-Time 4 Execution Time Prediction 5 System Scheduler 6 Timely Service 7 The Road Ahead Bibliography Inde

    Group II Introns

    No full text

    Slice-Level Trading of Quality and Performance in Decoding H.264 Video Slice-basiertes Abwägen zwischen Qualität und Leistung beim Dekodieren von H.264-Video

    No full text
    When a demanding video decoding task requires more CPU resources then available, playback degrades ungracefully today: The decoder skips frames selected arbitrarily or by simple heuristics, which is noticed by the viewer as jerky motion in the good case or as images completely breaking up in the bad case. The latter can happen due to missing reference frames. This thesis provides a way to schedule individual decoding tasks based on a cost for performance trade. Therefore, I will present a way to preprocess a video, generating estimates for the cost in terms of execution time and the performance in terms of perceived visual quality. The granularity of the scheduling decision is a single slice, which leads to a much more fine-grained approach than dealing with entire frames. Together with an actual scheduler implementation that uses the generated estimates, this work allows for higher perceived quality video playback in case of CPU overload.Wenn eine anspruchsvolle Video-Dekodierung mehr Prozessor-Ressourcen benötigt, als verfügbar sind, dann verschlechtert sich die Abspielqualität mit aktuellen Methoden drastisch: Willkürlich oder mit einfachen Heuristiken ausgewählten Bilder werden nicht dekodiert. Diese Auslassung nimmt der Betrachter im günstigsten Fall nur als ruckelnde Bewegung wahr, im ungünstigen Fall jedoch als komplettes Zusammenbrechen nachfolgender Bilder durch Folgefehler im Dekodierprozess. Meine Arbeit ermöglicht es, einzelne Teilaufgaben des Dekodierprozesses anhand einer Kosten-Nutzen-Analyse einzuplanen. Dafür ermittle ich die Kosten im Sinne von Rechenzeitbedarf und den Nutzen im Sinne von visueller Qualität für einzelne Slices eines H.264 Videos. Zusammen mit einer Implementierung eines Schedulers, der diese Werte nutzt, erlaubt meine Arbeit höhere vom Betrachter wahrgenommene Videoqualität bei knapper Prozessorzeit
    corecore