2,747 research outputs found

    The Vacua of Dipolar Cavity Quantum Electrodynamics

    Full text link
    The structure of solids and their phases is mainly determined by static Coulomb forces while the coupling of charges to the dynamical, i.e., quantized degrees of freedom of the electromagnetic field plays only a secondary role. Recently, it has been speculated that this general rule can be overcome in the context of cavity quantum electrodynamics (QED), where the coupling of dipoles to a single field mode can be dramatically enhanced. Here we present a first exact analysis of the ground states of a dipolar cavity QED system in the non-perturbative coupling regime, where electrostatic and dynamical interactions play an equally important role. Specifically, we show how strong and long-range vacuum fluctuations modify the states of dipolar matter and induce novel phases with unusual properties. Beyond a purely fundamental interest, these general mechanisms can be important for potential applications, ranging from cavity-assisted chemistry to quantum technologies based on ultrastrongly coupled circuit QED systems.Comment: Submission to SciPost, 23 pages, 5 figures (+ 5 in Appendix

    Implementation of Ururguay Round commitments : the development challenge

    Get PDF
    At the Uruguay Round, developing countries took on unprecedented obligations not only to reduce trade barriers, but to implement significant reforms both of trade procedures, e.g., import licensing procedures, customs valuation and of many areas of regulation that establish the basic business environment in the domestic economy, e.g., technical, sanitary and phytosanitary standards (SPS), intellectual property law. Implementing such reforms are investment decisions in that implementation will require purchase of equipment, training of people, establishment of systems of checks and balances, etc. This will cost money and the amounts of money involved are substantial. Based on World Bank project experience in the areas covered by the agreements, an entire year's development budget is at stake in many of the least developed countries. Least developed country institutions in these areas are weak, and would benefit from strengthening and reform. However, the authors'analysis indicates that the World Trade Organization (WTO) obligations reflect little awareness of development problems and little appreciation of the capacities of the least developed countries to carry out the functions that SPS, customs valuation, intellectual property, etc. regulations address. The content of these obligations can be characterized as the advanced countries saying to the others,"Do it my way!"The authors touch at the beginning on another important point. Because of their limited capacity to participate in the Uruguay Round negotiations, the WTO process has generated no sense of"ownership"of the reforms to which WTO membership obligates them. From their perspective, the implementation exercise has been imposed in an imperial way, with little concern for what it will cost, how it will be done, or if it will support their development efforts.Economic Theory&Research,Judicial System Reform,Rules of Origin,Environmental Economics&Policies,Customs Administration,Economic Theory&Research,Rules of Origin,Trade and Regional Integration,Environmental Economics&Policies,Customs Administration

    Using Unmanned Aerial Systems for Deriving Forest Stand Characteristics in Mixed Hardwoods of West Virginia

    Get PDF
    Forest inventory information is a principle driver for forest management decisions. Information gathered through these inventories provides a summary of the condition of forested stands. The method by which remote sensing aids land managers is changing rapidly. Imagery produced from unmanned aerial systems (UAS) offer high temporal and spatial resolutions to small-scale forest management. UAS imagery is less expensive and easier to coordinate to meet project needs compared to traditional manned aerial imagery. This study focused on producing an efficient and approachable work flow for producing forest stand board volume estimates from UAS imagery in mixed hardwood stands of West Virginia. A supplementary aim of this project was to evaluate which season was best to collect imagery for forest inventory. True color imagery was collected with a DJI Phantom 3 Professional UAS and was processed in Agisoft Photoscan Professional. Automated tree crown segmentation was performed with Trimble eCognition Developer’s multi-resolution segmentation function with manual optimization of parameters through an iterative process. Individual tree volume metrics were derived from field data relationships and volume estimates were processed in EZ CRUZ forest inventory software. The software, at best, correctly segmented 43% of the individual tree crowns. No correlation between season of imagery acquisition and quality of segmentation was shown. Volume and other stand characteristics were not accurately estimated and were faulted by poor segmentation. However, the imagery was able to capture gaps consistently and provide a visualization of forest health. Difficulties, successes and time required for these procedures were thoroughly noted

    Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic Ising antiferromagnets

    Full text link
    We explore the dynamics of artificial one- and two-dimensional Ising-like quantum antiferromagnets with different lattice geometries by using a Rydberg quantum simulator of up to 36 spins in which we dynamically tune the parameters of the Hamiltonian. We observe a region in parameter space with antiferromagnetic (AF) ordering, albeit with only finite-range correlations. We study systematically the influence of the ramp speeds on the correlations and their growth in time. We observe a delay in their build-up associated to the finite speed of propagation of correlations in a system with short-range interactions. We obtain a good agreement between experimental data and numerical simulations taking into account experimental imperfections measured at the single particle level. Finally, we develop an analytical model, based on a short-time expansion of the evolution operator, which captures the observed spatial structure of the correlations, and their build-up in time

    Controlled generation of a pn-junction in a waveguide integrated graphene photodetector

    Full text link
    With its electrically tunable light absorption and ultrafast photoresponse, graphene is a promising candidate for high-speed chip-integrated photonics. The generation mechanisms of photosignals in graphene photodetectors have been studied extensively in the past years. However, the knowledge about efficient light conversion at graphene pn-junctions has not yet been translated into high-performance devices. Here, we present a graphene photodetector integrated on a silicon slot-waveguide, acting as a dual-gate to create a pn-junction in the optical absorption region of the device. While at zero bias the photo-thermoelectric effect is the dominant conversion process, an additional photoconductive contribution is identified in a biased configuration. Extrinsic responsivities of 35 mA/W, or 3.5 V/W, at zero bias and 76 mA/W at 300 mV bias voltage are achieved. The device exhibits a 3 dB-bandwidth of 65 GHz, which is the highest value reported for a graphene-based photodetector.Comment: 19 pages, 16 figure

    Regularization Dependence of Running Couplings in Softly Broken Supersymmetry

    Full text link
    We discuss the dependence of running couplings on the choice of regularization method in a general softly-broken N=1 supersymmetric theory. Regularization by dimensional reduction respects supersymmetry, but standard dimensional regularization does not. We find expressions for the differences between running couplings in the modified minimal subtraction schemes of these two regularization methods, to one loop order. We also find the two-loop renormalization group equations for gaugino masses in both schemes, and discuss the application of these results to the Minimal Supersymmetric Standard Model.Comment: 11 pages. v2: Signs of equations (1.2) and (4.2) are fixe

    Preclinical evaluation of NF-kappa B-triggered dendritic cells expressing the viral oncogenic driver of Merkel cell carcinoma for therapeutic vaccination

    Get PDF
    Background: Merkel cell carcinoma (MCC) is a rare but very aggressive skin tumor that develops after integration of a truncated form of the large T-antigen (truncLT) of the Merkel cell polyomavirus (MCV) into the host’s genome. Therapeutic vaccination with dendritic cells (DCs) loaded with tumor antigens is an active form of immunotherapy, which intends to direct the immune system towards tumors which express the respective vaccination antigens. Methods: Cytokine-matured monocyte-derived DCs of healthy donors and MCC patients were electroporated with mRNA encoding the truncLT. To permit major histocompatibility complex (MHC) class II next to class I presentation, we used an RNA construct in which the antigen was fused to a DCLamp sequence in addition to the unmodified antigen. To further improve their immunogenicity, the DCs were additionally activated by co-transfection with the constitutively active nuclear factor (NF)-κB activator caIKK. These DCs were used to stimulate autologous CD8 + T-cells or a mixture of CD4 + and CD8 + T-cells. Then the percentage of T-cells, specific for the truncLT, was quantified by interferon (IFN)γ ELISpot assays. Results: Both the truncLT and its DCLamp-fusion were detected within the DCs by flow cytometry, albeit the latter required blocking of the proteasome. The transfection with caIKK upregulated maturation markers and induced cytokine production. After 2–3 rounds of stimulation, the T-cells from 11 out of 13 healthy donors recognized the antigen. DCs without caIKK appeared in comparison less potent in inducing such responses. When using cells derived from MCC patients, we could induce responses for 3 out of 5 patients; however, here the caIKK-transfected DCs did not display their superiority. Conclusion: These results show that optimized DCs are able to induce MCV-antigen-specific T-cell responses. Therapeutic vaccination with such transfected DCs could direct the immune system against MCC
    corecore