20,942 research outputs found

    Mott insulators of ultracold fermionic alkaline earth atoms in three dimensions

    Full text link
    We study a class of SU(N) Heisenberg models, describing Mott insulators of fermionic ultra-cold alkaline earth atoms on the three-dimensional simple cubic lattice. Based on an earlier semiclassical analysis, magnetic order is unlikely, and we focus instead on a solvable large-N limit designed to address the competition among non-magnetic ground states. We find a rich phase diagram as a function of the filling parameter k, composed of a variety of ground states spontaneously breaking lattice symmetries, and in some cases also time reversal symmetry. One particularly striking example is a state spontaneously breaking lattice rotation symmetry, where the cubic lattice breaks up into bilayers, each of which forms a two-dimensional chiral spin liquid state.Comment: 10 pages, 3 figures. v2: minor change

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    Quality delivery of mobile video: In-depth understanding of user requirements

    Get PDF
    The increase of powerful mobile devices has accelerated the demand for mobile videos. Previous studies in mobile video have focused on understanding of mobile video usage, improvement of video quality, and user interface design in video browsing. However, research focusing on a deep understanding of users’ needs for a pleasing quality delivery of mobile video is lacking. In particular, what quality-delivery mode users prefer and what information relevant to video quality they need requires attention. This paper presents a qualitative interview study with 38 participants to gain an insight into three aspects: influencing factors of user-desired video quality, user-preferred quality-delivery modes, and user-required interaction information of mobile video. The results show that user requirements for video quality are related to personal preference, technology background and video viewing experience, and the preferred quality-delivery mode and interactive mode are diverse. These complex user requirements call for flexible and personalised quality delivery and interaction of mobile video

    Video2GIF: Automatic Generation of Animated GIFs from Video

    Full text link
    We introduce the novel problem of automatically generating animated GIFs from video. GIFs are short looping video with no sound, and a perfect combination between image and video that really capture our attention. GIFs tell a story, express emotion, turn events into humorous moments, and are the new wave of photojournalism. We pose the question: Can we automate the entirely manual and elaborate process of GIF creation by leveraging the plethora of user generated GIF content? We propose a Robust Deep RankNet that, given a video, generates a ranked list of its segments according to their suitability as GIF. We train our model to learn what visual content is often selected for GIFs by using over 100K user generated GIFs and their corresponding video sources. We effectively deal with the noisy web data by proposing a novel adaptive Huber loss in the ranking formulation. We show that our approach is robust to outliers and picks up several patterns that are frequently present in popular animated GIFs. On our new large-scale benchmark dataset, we show the advantage of our approach over several state-of-the-art methods.Comment: Accepted to CVPR 201
    corecore