39 research outputs found

    An end-to-end framework for real-time automatic sleep stage classification.

    Get PDF
    Sleep staging is a fundamental but time consuming process in any sleep laboratory. To greatly speed up sleep staging without compromising accuracy, we developed a novel framework for performing real-time automatic sleep stage classification. The client-server architecture adopted here provides an end-to-end solution for anonymizing and efficiently transporting polysomnography data from the client to the server and for receiving sleep stages in an interoperable fashion. The framework intelligently partitions the sleep staging task between the client and server in a way that multiple low-end clients can work with one server, and can be deployed both locally as well as over the cloud. The framework was tested on four datasets comprising ≈1700 polysomnography records (≈12000 hr of recordings) collected from adolescents, young, and old adults, involving healthy persons as well as those with medical conditions. We used two independent validation datasets: one comprising patients from a sleep disorders clinic and the other incorporating patients with Parkinson's disease. Using this system, an entire night's sleep was staged with an accuracy on par with expert human scorers but much faster (≈5 s compared with 30-60 min). To illustrate the utility of such real-time sleep staging, we used it to facilitate the automatic delivery of acoustic stimuli at targeted phase of slow-sleep oscillations to enhance slow-wave sleep

    Time of day is associated with paradoxical reductions in global signal fluctuation and functional connectivity.

    Get PDF
    The brain exhibits substantial diurnal variation in physiology and function, but neuroscience studies rarely report or consider the effects of time of day. Here, we examined variation in resting-state functional MRI (fMRI) in around 900 individuals scanned between 8 AM and 10 PM on two different days. Multiple studies across animals and humans have demonstrated that the brain's global signal (GS) amplitude (henceforth referred to as "fluctuation") increases with decreased arousal. Thus, in accord with known circadian variation in arousal, we hypothesised that GS fluctuation would be lowest in the morning, increase in the midafternoon, and dip in the early evening. Instead, we observed a cumulative decrease in GS fluctuation as the day progressed. Although respiratory variation also decreased with time of day, control analyses suggested that this did not account for the reduction in GS fluctuation. Finally, time of day was associated with marked decreases in resting-state functional connectivity across the whole brain. The magnitude of decrease was significantly stronger than associations between functional connectivity and behaviour (e.g., fluid intelligence). These findings reveal time of day effects on global brain activity that are not easily explained by expected arousal state or physiological artefacts. We conclude by discussing potential mechanisms for the observed diurnal variation in resting brain activity and the importance of accounting for time of day in future studies

    Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation

    Get PDF
    NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family

    Progressive decline in hippocampal CA1 volume in individuals at ultra-high-risk for psychosis who do not remit:findings from the longitudinal youth at risk study

    Get PDF
    Most individuals identified as ultra-high-risk (UHR) for psychosis do not develop frank psychosis. They continue to exhibit subthreshold symptoms, or go on to fully remit. Prior work has shown that the volume of CA1, a subfield of the hippocampus, is selectively reduced in the early stages of schizophrenia. Here we aimed to determine whether patterns of volume change of CA1 are different in UHR individuals who do or do not achieve symptomatic remission. Structural MRI scans were acquired at baseline and at 1-2 follow-up time points (at 12-month intervals) from 147 UHR and healthy control subjects. An automated method (based on an ex vivo atlas of ultra-high-resolution hippocampal tissue) was used to delineate the hippocampal subfields. Over time, a greater decline in bilateral CA1 subfield volumes was found in the subgroup of UHR subjects whose subthreshold symptoms persisted (n=40) and also those who developed clinical psychosis (n=12), compared with UHR subjects who remitted (n=41) and healthy controls (n=54). No baseline differences in volumes of the overall hippocampus or its subfields were found among the groups. Moreover, the rate of volume decline of CA1, but not of other hippocampal subfields, in the non-remitters was associated with increasing symptom severity over time. Thus, these findings indicate that there is deterioration of CA1 volume in persistently symptomatic UHR individuals in proportion to symptomatic progression.</p

    Rate of brain aging associates with future executive function in Asian children and older adults

    Get PDF
    Brain age has emerged as a powerful tool to understand neuroanatomical aging and its link to health outcomes like cognition. However, there remains a lack of studies investigating the rate of brain aging and its relationship to cognition. Furthermore, most brain age models are trained and tested on cross-sectional data from primarily Caucasian, adult participants. It is thus unclear how well these models generalize to non-Caucasian participants, especially children. Here, we tested a previously published deep learning model on Singaporean elderly participants (55−88 years old) and children (4−11 years old). We found that the model directly generalized to the elderly participants, but model finetuning was necessary for children. After finetuning, we found that the rate of change in brain age gap was associated with future executive function performance in both elderly participants and children. We further found that lateral ventricles and frontal areas contributed to brain age prediction in elderly participants, while white matter and posterior brain regions were more important in predicting brain age of children. Taken together, our results suggest that there is potential for generalizing brain age models to diverse populations. Moreover, the longitudinal change in brain age gap reflects developing and aging processes in the brain, relating to future cognitive function

    Neuroanatomical heterogeneity and homogeneity in individuals at clinical high risk for psychosis.

    Get PDF
    Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the 'normativeness' of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation

    Structural covariance network topology in individuals at clinical high risk for psychosis: the ENIGMA-CHR Study

    Get PDF
    Brain network architecture is anticipated to influence future grey matter loss in individuals at Clinical High Risk (CHR) for psychosis. However, existing studies on grey matter structural network properties in CHR are scarce and constrained by small sample sizes. Here, we examined network topology differences comparing a) CHR versus healthy controls (HC); b) CHR who transitioned to psychosis (CHR-T) versus those who did not (CHR-NT); and c) different subsyndromes. We included structural scans from 1842 CHR individuals and 1417 HC individuals from 31 sites within the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium. At the global level, CHR individuals exhibited lower structural covariance (q < 0.001; Cohen's d = 0.164) and less optimal structural network configuration than HC (lower global efficiency and clustering coefficient, d = 0.100,0.087, qs <= 0.027). Though no global difference between CHR-T and CHR-NT, network distinctiveness of the frontal and temporal surface area networks was higher in CHR-T than CHR-NT (d = 0.223,0.237) and HC (d = 0.208,0.219) (qs < 0.001). Network distinctiveness of the frontal cortical thickness network was lower in CHR-T (d = 0.218, q < 0.001) than CHR-NT and HC (d = 0.165, q < 0.001). Importantly, higher network distinctiveness was associated with worse positive symptoms in CHR-NT (frontal surface area, q = 0.008, R2 = 0.013) and at trend with worse negative symptoms in CHR-T (frontal thickness, q = 0.063, R2 = 0.049). Further, the brief intermittent psychotic syndrome subgroup showed more severe network alterations. Together, brain structural networks inform symptoms and the risk of transition to psychosis in CHR individuals

    Limitations on visual information processing in the sleep-deprived brain and their underlying mechanisms

    Get PDF
    Sleep deprivation (SD) which has become more prevalent globally, impairs various aspects of cognition. Slowing of visual processing, loss of selective attention, distractor inhibition, visual short-term memory and reduced peripheral processing capacity are associated with diminished engagement of fronto-parietal regions mediating top-down control of attention as well as selectively reduced visual extrastriate cortex activation. The onset of ‘local sleep’ following sustained wakefulness could account for these, as well as time-on-task effects. Concurrently, alterations in cortical-cortical as well as thalamo-cortical connectivity can disrupt the flow of sensory information from the periphery to association cortex responsible for higher order cognition. Our ability to process visual stimuli is compromised when sleep deprived, even during the periods when we are apparently responsive

    Editorial overview: Sleep and cognition

    No full text
    SCOPUS: ed.jinfo:eu-repo/semantics/publishe

    Editorial overview: Sleep and cognition

    Full text link
    corecore