304 research outputs found
TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844
Data from the newly-commissioned \textit{Transiting Exoplanet Survey
Satellite} (TESS) has revealed a "hot Earth" around LHS 3844, an M dwarf
located 15 pc away. The planet has a radius of and
orbits the star every 11 hours. Although the existence of an atmosphere around
such a strongly irradiated planet is questionable, the star is bright enough
(, ) for this possibility to be investigated with transit and
occultation spectroscopy. The star's brightness and the planet's short period
will also facilitate the measurement of the planet's mass through Doppler
spectroscopy.Comment: 10 pages, 4 figures. Submitted to ApJ Letters. This letter makes use
of the TESS Alert data, which is currently in a beta test phase, using data
from the pipelines at the TESS Science Office and at the TESS Science
Processing Operations Cente
Current Status and Prevention Strategy for Coal-arsenic Poisoning in Guizhou, China
Arsenic exposure from burning coal with high arsenic contents occurs in southwest Guizhou, China. Coal in this region contains extremely high concentrations of inorganic arsenic. Arsenic exposure from coal-burning is much higher than exposure from arsenic-contaminated water in other areas of China. The current status and prevention strategies for arsenic poisoning from burning high-arsenic coal in southwest Guizhou, China, is reported here. Over 3,000 arsenic-intoxicated patients were diagnosed based on skin lesions and urinary arsenic excretion. Non-cancerous toxicities and malignancies were much more common and severe in these patients than in other arsenic-affected populations around the world. The high incidence of cancer and arsenic-related mortality in this cohort is alarming. Chelation therapy was performed but the long-term therapeutic effects are not satisfactory. The best prevention strategy is to eliminate arsenic exposure. Funds from the Chinese Government are currently available to solve this arsenic exposure problem. Strategies include the installation of vented stoves, the use of marsh gas to replace coal, health education, the improvement of nutritional status, and the use of various therapies to treat arsenic-induced skin and liver diseases
Biokinetics and Subchronic Toxic Effects of Oral Arsenite, Arsenate, Monomethylarsonic Acid, and Dimethylarsinic Acid in v-Ha-ras Transgenic (Tg.AC) Mice
Previous research demonstrated that 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment increased the number of skin papillomas in v-Ha-ras transgenic (Tg.AC) mice that had received sodium arsenite [(As(III)] in drinking water, indicating that this model is useful for studying the toxic effects of arsenic in vivo. Because the liver is a known target of arsenic, we examined the pathophysiologic and molecular effects of inorganic and organic arsenical exposure on Tg.AC mouse liver in this study. Tg.AC mice were provided drinking water containing As(III), sodium arsenate [As(V)], monomethylarsonic acid [(MMA(V)], and 1,000 ppm dimethylarsinic acid [DMA(V)] at dosages of 150, 200, 1,500, or 1,000 ppm as arsenic, respectively, for 17 weeks. Control mice received unaltered water. Four weeks after initiation of arsenic treatment, TPA at a dose of 1.25 μg/200 μL acetone was applied twice a week for 2 weeks to the shaved dorsal skin of all mice, including the controls not receiving arsenic. In some cases arsenic exposure reduced body weight gain and caused mortality (including moribundity). Arsenical exposure resulted in a dose-dependent accumulation of arsenic in the liver that was unexpectedly independent of chemical species and produced hepatic global DNA hypomethylation. cDNA microarray and reverse transcriptase–polymerase chain reaction analysis revealed that all arsenicals altered the expression of numerous genes associated with toxicity and cancer. However, organic arsenicals [MMA(V) and DMA(V)] induced a pattern of gene expression dissimilar to that of inorganic arsenicals. In summary, subchronic exposure of Tg.AC mice to inorganic or organic arsenicals resulted in toxic manifestations, hepatic arsenic accumulation, global DNA hypomethylation, and numerous gene expression changes. These effects may play a role in arsenic-induced hepatotoxicity and carcinogenesis and may be of particular toxicologic relevance
Vascular Dysfunction in Patients with Chronic Arsenosis Can Be Reversed by Reduction of Arsenic Exposure
Chronic arsenic exposure causes vascular diseases associated with systematic dysfunction of endogenous nitric oxide. Replacement of heavily arsenic-contaminated drinking water with low-arsenic water is a potential intervention strategy for arsenosis, although the reversibility of arsenic intoxication has not established. In the present study, we examined urinary excretion of cyclic guanosine 3′,5′-monophosphate (cGMP), a second messenger of the vasoactive effects of nitric oxide, and signs and symptoms for peripheral vascular function in 54 arsenosis patients before and after they were supplied with low-arsenic drinking water in an endemic area of chronic arsenic poisoning in Inner Mongolia, China. The arsenosis patients showed a marked decrease in urinary excretion of cGMP (mean ± SEM: male, 37.0 ± 6.1; female, 37.2 ± 5.4 nmol/mmol creatinine), and a 13-month period of consuming low-arsenic drinking water reversed this trend (male, 68.0 ± 5.6; female, 70.6 ± 3.0 nmol/mmol creatinine) and improved peripheral vascular response to cold stress. Our intervention study indicates that peripheral vascular disease in arsenosis patients can be reversed by exposure cessation and has important implications for the public health approach to arsenic exposure
Global Gene Expression Associated with Hepatocarcinogenesis in Adult Male Mice Induced by in Utero Arsenic Exposure
Our previous work has shown that exposure to inorganic arsenic in utero produces hepatocellular carcinoma (HCC) in adult male mice. To explore further the molecular mechanisms of transplacental arsenic hepatocarcinogenesis, we conducted a second arsenic transplacental carcinogenesis study and used a genomewide microarray to profile arsenic-induced aberrant gene expression more extensively. Briefly, pregnant C3H mice were given drinking water containing 85 ppm arsenic as sodium arsenite or unaltered water from days 8 to 18 of gestation. The incidence of HCC in adult male offspring was increased 4-fold and tumor multiplicity 3-fold after transplacental arsenic exposure. Samples of normal liver and liver tumors were taken at autopsy for genomic analysis. Arsenic exposure in utero resulted in significant alterations (p < 0.001) in the expression of 2,010 genes in arsenic-exposed liver samples and in the expression of 2,540 genes in arsenic-induced HCC. Ingenuity Pathway Analysis revealed that significant alterations in gene expression occurred in a number of biological networks, and Myc plays a critical role in one of the primary networks. Real-time reverse transcriptase–polymerase chain reaction and Western blot analysis of selected genes/proteins showed > 90% concordance. Arsenic-altered gene expression included activation of oncogenes and HCC biomarkers, and increased expression of cell proliferation–related genes, stress proteins, and insulin-like growth factors and genes involved in cell–cell communications. Liver feminization was evidenced by increased expression of estrogen-linked genes and altered expression of genes that encode gender-related metabolic enzymes. These novel findings are in agreement with the biology and histology of arsenic-induced HCC, thereby indicating that multiple genetic events are associated with transplacental arsenic hepatocarcinogenesis
Arsenic Exposure Transforms Human Epithelial Stem/Progenitor Cells into a Cancer Stem-like Phenotype
Cadmium Induces p53-Dependent Apoptosis in Human Prostate Epithelial Cells
Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl2 and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl2 concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis
Blood Metallothionein Transcript as a Biomarker for Metal Sensitivity: Low Blood Metallothionein Transcripts in Arsenicosis Patients from Guizhou, China
- …
