1,901 research outputs found

    Robust Helical Edge Transport in Quantum Spin Hall Quantum Wells

    Get PDF
    We show that burying of the Dirac point in semiconductor-based quantum-spin-Hall systems can generate unexpected robustness of edge states to magnetic fields. A detailed kp{\bf k\cdot p} band-structure analysis reveals that InAs/GaSb and HgTe/CdTe quantum wells exhibit such buried Dirac points. By simulating transport in a disordered system described within an effective model, we further demonstrate that buried Dirac points yield nearly quantized edge conduction out to large magnetic fields, consistent with recent experiments.Comment: 11 pages, 6 figure

    Spin-polarized Quantum Transport in Mesoscopic Conductors: Computational Concepts and Physical Phenomena

    Get PDF
    Mesoscopic conductors are electronic systems of sizes in between nano- and micrometers, and often of reduced dimensionality. In the phase-coherent regime at low temperatures, the conductance of these devices is governed by quantum interference effects, such as the Aharonov-Bohm effect and conductance fluctuations as prominent examples. While first measurements of quantum charge transport date back to the 1980s, spin phenomena in mesoscopic transport have moved only recently into the focus of attention, as one branch of the field of spintronics. The interplay between quantum coherence with confinement-, disorder- or interaction-effects gives rise to a variety of unexpected spin phenomena in mesoscopic conductors and allows moreover to control and engineer the spin of the charge carriers: spin interference is often the basis for spin-valves, -filters, -switches or -pumps. Their underlying mechanisms may gain relevance on the way to possible future semiconductor-based spin devices. A quantitative theoretical understanding of spin-dependent mesoscopic transport calls for developing efficient and flexible numerical algorithms, including matrix-reordering techniques within Green function approaches, which we will explain, review and employ.Comment: To appear in the Encyclopedia of Complexity and System Scienc

    Spin currents in rough graphene nanoribbons: Universal fluctuations and spin injection

    Get PDF
    We investigate spin conductance in zigzag graphene nanoribbons and propose a spin injection mechanism based only on graphitic nanostructures. We find that nanoribbons with atomically straight, symmetric edges show zero spin conductance, but nonzero spin Hall conductance. Only nanoribbons with asymmetrically shaped edges give rise to a finite spin conductance and can be used for spin injection into graphene. Furthermore, nanoribbons with rough edges exhibit mesoscopic spin conductance fluctuations with a universal value of rmsGs0.4e/4π\mathrm{rms} G_\mathrm{s}\approx 0.4 e/4\pi.Comment: 4 pages, 5 figures, PdfLaTeX, accepted for publication in Physical Review Letter

    A toolbox for animal call recognition

    Get PDF
    Monitoring the natural environment is increasingly important as habit degradation and climate change reduce theworld’s biodiversity.We have developed software tools and applications to assist ecologists with the collection and analysis of acoustic data at large spatial and temporal scales.One of our key objectives is automated animal call recognition, and our approach has three novel attributes. First, we work with raw environmental audio, contaminated by noise and artefacts and containing calls that vary greatly in volume depending on the animal’s proximity to the microphone. Second, initial experimentation suggested that no single recognizer could dealwith the enormous variety of calls. Therefore, we developed a toolbox of generic recognizers to extract invariant features for each call type. Third, many species are cryptic and offer little data with which to train a recognizer. Many popular machine learning methods require large volumes of training and validation data and considerable time and expertise to prepare. Consequently we adopt bootstrap techniques that can be initiated with little data and refined subsequently. In this paper, we describe our recognition tools and present results for real ecological problems

    Weak localization in mesoscopic hole transport: Berry phases and classical correlations

    Get PDF
    We consider phase-coherent transport through ballistic and diffusive two-dimensional hole systems based on the Kohn-Luttinger Hamiltonian. We show that intrinsic heavy-hole light-hole coupling gives rise to clear-cut signatures of an associated Berry phase in the weak localization which renders the magneto-conductance profile distinctly different from electron transport. Non-universal classical correlations determine the strength of these Berry phase effects and the effective symmetry class, leading even to antilocalization-type features for circular quantum dots and Aharonov-Bohm rings in the absence of additional spin-orbit interaction. Our semiclassical predictions are quantitatively confirmed by numerical transport calculations

    Low-Income Demand for Local Telephone Service: Effects of Lifeline and Linkup

    Get PDF
    This study evaluates the effect of the “Lifeline” and “Linkup” subsidy programs on telephone penetration rates of low-income households. It is the first to estimate low-income telephone demand across demographic groups using location-specific Lifeline and Linkup prices. The demand specifications use a discrete choice model aggregated across demographic groups. GMM estimators correct for the possible endogeneity of subsidized prices. A simulation predicts low-income telephone penetration would be 4.1 percentage points lower without Lifeline and Linkup. Results suggest that Linkup is more cost-effective than Lifeline, and that automatic enrollment in the programs increases penetration.telephone subsidies, low-income telephone usuers

    A friendly conquest: German libraries after the fall of the Berlin Wall in 1989

    Get PDF
    This paper provides an overview of the development of libraries in the geographical area of the former German Democratic Republic (GDR) after it joined the territory of the Federal Republic of Germany (FRG) in 1990. It briefly describes the situation of libraries in the GDR and the major changes that accompanied the unification process. It also touches on a series of three nationwide studies on reading and library-user behavior, and on library legislation and major national-planning initiatives since 1989. For academic libraries, the unification process was mainly favorable, as a structured plan and continuous funding were introduced as part of higher education development. For public libraries, the process was less structured, severely reducing a previously very dense system within a very short time. Recent library statistics indicate, however, that the integration of the two library systems has benefited the remaining libraries and left no clearly visible difference between library systems in the eastern and western parts of Germany.published or submitted for publicatio

    An elliptic expansion of the potential field source surface model

    Full text link
    Context. The potential field source surface model is frequently used as a basis for further scientific investigations where a comprehensive coronal magnetic field is of importance. Its parameters, especially the position and shape of the source surface, are crucial for the interpretation of the state of the interplanetary medium. Improvements have been suggested that introduce one or more additional free parameters to the model, for example, the current sheet source surface (CSSS) model. Aims. Relaxing the spherical constraint of the source surface and allowing it to be elliptical gives modelers the option of deforming it to more accurately match the physical environment of the specific period or location to be analyzed. Methods. A numerical solver is presented that solves Laplace's equation on a three-dimensional grid using finite differences. The solver is capable of working on structured spherical grids that can be deformed to create elliptical source surfaces. Results. The configurations of the coronal magnetic field are presented using this new solver. Three-dimensional renderings are complemented by Carrington-like synoptic maps of the magnetic configuration at different heights in the solar corona. Differences in the magnetic configuration computed by the spherical and elliptical models are illustrated.Comment: 11 pages, 7 figure

    Symmetry Classes in Graphene Quantum Dots: Universal Spectral Statistics, Weak Localization, and Conductance Fluctuations

    Get PDF
    We study the symmetry classes of graphene quantum dots, both open and closed, through the conductance and energy level statistics. For abrupt termination of the lattice, these properties are well described by the standard orthogonal and unitary ensembles. However, for smooth mass confinement, special time-reversal symmetries associated with the sublattice and valley degrees of freedom are critical: they lead to block diagonal Hamiltonians and scattering matrices with blocks belonging to the unitary symmetry class even at zero magnetic field. While the effect of this structure is clearly seen in the conductance of open dots, it is suppressed in the spectral statistics of closed dots, because the intervalley scattering time is shorter than the time required to resolve a level spacing in the closed systems but longer than the escape time of the open systems.Comment: 4 pages, 4 figures, RevTex, submitted to Phys. Rev. Let
    corecore