9 research outputs found
A 6 Week Randomized Double-Blind Placebo-Controlled Trial of Ziprasidone for the Acute Depressive Mixed State
OBJECTIVE: To examine the efficacy of ziprasidone vs. placebo for the depressive mixed state in patients with bipolar disorder type II or major depressive disorder (MDD). METHODS: 73 patients were randomized in a double-blinded, placebo-controlled study to ziprasidone (40-160 mg/d) or placebo for 6 weeks. They met DSM-IV criteria for a major depressive episode (MDE), while also meeting 2 or 3 (but not more nor less) DSM-IV manic criteria. They did not meet DSM-IV criteria for a mixed or manic episode. Baseline psychotropic drugs were continued unchanged. The primary endpoint measured was Montgomery-Åsberg Depression Rating Scale (MADRS) scores over time. The mean dose of ziprasidone was 129.7±45.3 mg/day and 126.1±47.1 mg/day for placebo. RESULTS: The primary outcome analysis indicated efficacy of ziprasidone versus placebo (p = 0.0038). Efficacy was more pronounced in type II bipolar disorder than in MDD (p = 0.036). Overall ziprasidone was well tolerated, without notable worsening of weight or extrapyramidal symptoms. CONCLUSIONS: There was a statistically significant benefit with ziprasidone versus placebo in this first RCT of any medication for the provisional diagnostic concept of the depressive mixed state. TRIAL REGISTRATION: Clinicaltrials.gov NCT00490542
Ziprasidone vs Placebo: 6 week change in MADRS (SD) from baseline.
<p>Ziprasidone vs Placebo: 6 week change in MADRS (SD) from baseline.</p
Clinical Response of the Sample.
<p>SD = Standard deviation, MADRS = Montgomery-Åsberg Depression Rating Scale, MRS = Mania Rating Scale, CGI = Clinical Global Impressions Scale, GAF = Global Assessment of Functioning Scale.</p>*<p>p<0.05.</p>†<p>Outcome change = Change of each measure from baseline to endpoint.</p>‡<p>F = 8.273.</p
Clinical and Demographic Characteristics of the Sample.
<p>SD = standard deviation, MDD = major depressive disorder, BD = bipolar disorder.</p
Ziprasidone vs Placebo: 6 week change in MRS (SD) from baseline.
<p>Ziprasidone vs Placebo: 6 week change in MRS (SD) from baseline.</p
Final ANOVA table of model without baseline adjustments.
<p>DF = degrees of freedom, ANOVA = Analysis of variance, β = effect estimate.</p
Recommended from our members
Massively parallel characterization of regulatory elements in the developing human cortex
Nucleotide changes in gene regulatory elements are important determinants of neuronal development and diseases. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 open chromatin regions, including thousands of sequences with cell type-specific accessibility and variants associated with brain gene regulation. In primary cells, we identified 46,802 active enhancer sequences and 164 variants that alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development
Cross-ancestry atlas of gene, isoform, and splicing regulation in the developing human brain
INTRODUCTION
Genome-wide association studies (GWASs) have identified thousands of loci associated with neurodevelopmental and psychiatric disorders, yet our lack of understanding of the target genes and biological mechanisms underlying these associations remains a major challenge. GWAS signals for many neuropsychiatric disorders, including autism spectrum disorder, schizophrenia, and bipolar disorder, are particularly enriched for gene-regulatory elements active during human brain development. However, the lack of a unified population-scale, ancestrally diverse gene-regulatory atlas of human brain development has been a major obstacle for the functional assessment of top loci and post-GWAS integrative analyses.
RATIONALE
To address this critical gap in knowledge, we have uniformly processed and systematically characterized gene, isoform, and splicing quantitative trait loci (cumulatively referred to as xQTLs) in the developing human brain across 672 unique samples from 4 to 39 postconception weeks spanning European, African-American, and Latino/admixed American ancestries). With this expanded atlas, we sought to specifically localize the timing and molecular features mediating the greatest proportion of neuropsychiatric GWAS heritability, to prioritize candidate risk genes and mechanisms for top loci, and to compare with analogous results using larger adult brain functional genomic reference panels.
RESULTS
In total, we identified 15,752 genes harboring a gene, isoform and/or splicing cis-xQTL, including 49 genes associated with four large, recurrent inversions. Highly concordant effect sizes were observed across populations, and our diverse reference panel improved resolution to fine-map underlying candidate causal regulatory variants. Substantially more genes were found to harbor QTLs in the first versus second trimester of brain development, with a notable drop in gene expression and splicing heritability observed from 10 to 18 weeks coinciding with a period of rapidly increasing cellular heterogeneity in the developing brain. Isoform-level regulation, particularly in the second trimester, mediated a greater proportion of heritability across multiple psychiatric GWASs compared with gene expression regulation. Through colocalization and transcriptome-wide association studies, we prioritized biological mechanisms for ~60% of GWAS loci across five neuropsychiatric disorders, with >2-fold more colocalizations observed compared with larger adult brain functional genomic reference panels. We observed convergence between common and rare-variant associations, including a cryptic splicing event in the high-confidence schizophrenia risk gene SP4. Finally, we constructed a comprehensive set of developmentally regulated gene and isoform coexpression networks harboring unique cell-type specificity and genetic enrichments. Leveraging this cell-type specificity, we identified >8000 module interaction QTLs, many of which exhibited additional GWAS colocalizations. Overall, neuropsychiatric GWASs and rare variant signals localized more strongly within maturing excitatory- and interneuron-associated modules compared with those enriched for neural progenitor cell types. Results can be visualized at devbrainhub.gandallab.org.
CONCLUSION
We have generated a large-scale, cross-population resource of gene, isoform, and splicing regulation in the developing human brain, providing comprehensive developmental and cell-type-informed mechanistic insights into the genetic underpinnings of complex neurodevelopmental and psychiatric disorders
