104 research outputs found

    Opposing effects of final population density and stress on Escherichia coli mutation rate

    Get PDF
    Evolution depends on mutations. For an individual genotype, the rate at which mutations arise is known to increase with various stressors (stress-induced mutagenesis-SIM) and decrease at high final population density (density-associated mutation-rate plasticity-DAMP). We hypothesised that these two forms of mutation-rate plasticity would have opposing effects across a nutrient gradient. Here we test this hypothesis, culturing Escherichia coli in increasingly rich media. We distinguish an increase in mutation rate with added nutrients through SIM (dependent on error-prone polymerases Pol IV and Pol V) and an opposing effect of DAMP (dependent on MutT, which removes oxidised G nucleotides). The combination of DAMP and SIM results in a mutation rate minimum at intermediate nutrient levels (which can support 7 × 10  cells ml ). These findings demonstrate a strikingly close and nuanced relationship of ecological factors-stress and population density-with mutation, the fuel of all evolution

    The Escherichia coli SOS Gene dinF Protects against Oxidative Stress and Bile Salts

    Get PDF
    DNA is constantly damaged by physical and chemical factors, including reactive oxygen species (ROS), such as superoxide radical (O2−), hydrogen peroxide (H2O2) and hydroxyl radical (•OH). Specific mechanisms to protect and repair DNA lesions produced by ROS have been developed in living beings. In Escherichia coli the SOS system, an inducible response activated to rescue cells from severe DNA damage, is a network that regulates the expression of more than 40 genes in response to this damage, many of them playing important roles in DNA damage tolerance mechanisms. Although the function of most of these genes has been elucidated, the activity of some others, such as dinF, remains unknown. The DinF deduced polypeptide sequence shows a high homology with membrane proteins of the multidrug and toxic compound extrusion (MATE) family. We describe here that expression of dinF protects against bile salts, probably by decreasing the effects of ROS, which is consistent with the observed decrease in H2O2-killing and protein carbonylation. These results, together with its ability to decrease the level of intracellular ROS, suggests that DinF can detoxify, either direct or indirectly, oxidizing molecules that can damage DNA and proteins from both the bacterial metabolism and the environment. Although the exact mechanism of DinF activity remains to be identified, we describe for the first time a role for dinF

    Global Health Governance and the Commercial Sector: A Documentary Analysis of Tobacco Company Strategies to Influence the WHO Framework Convention on Tobacco Control

    Get PDF
    Heide Weishaar and colleagues did an analysis of internal tobacco industry documents together with other data and describe the industry's strategic response to the proposed World Health Organization Framework Convention on Tobacco Control

    Enhancement strategies for transdermal drug delivery systems: current trends and applications

    Get PDF
    Transdermal drug delivery systems have become an intriguing research topic in pharmaceutical technology area and one of the most frequently developed pharmaceutical products in global market. The use of these systems can overcome associated drawbacks of other delivery routes, such as oral and parenteral. The authors will review current trends, and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of transdermal drug delivery systems and enhancement strategies. This article will initially discuss each transdermal enhancement method used in the development of first-generation transdermal products. These methods include drug/vehicle interactions, vesicles and particles, stratum corneum modification, energy-driven methods and stratum corneum bypassing techniques. Through suitable design and implementation of active stratum corneum bypassing methods, notably microneedle technology, transdermal delivery systems have been shown to deliver both low and high molecular weight drugs. Microneedle technology platforms have proven themselves to be more versatile than other transdermal systems with opportunities for intradermal delivery of drugs/biotherapeutics and therapeutic drug monitoring. These have shown that microneedles have been a prospective strategy for improving transdermal delivery systems. Graphical abstract: [Figure not available: see fulltext.]</p

    The Activity Support Scale for Multiple Groups (ACTS-MG): Child-reported Physical Activity Parenting in African American and Non-Hispanic White Families

    No full text
    This study aimed to assess the psychometric properties of a child-report, multidimensional measure of physical activity (PA) parenting, the Activity Support Scale for Multiple Groups (ACTS-MG), in African American and non-Hispanic white families. The ACTS-MG was administered to children aged 5 to 12 years. A three factor model of PA parenting (Modeling of PA, Logistic Support, and Restricting Access to Screen-based Activities) was tested separately for mother's and fathers' PA parenting. The proposed three-factor structure was supported in both racial groups for mothers’ PA parenting and in the African American sample for fathers’ PA parenting. Factorial invariance between racial groups was demonstrated for mother's PA parenting. Building on a previous study examining the ACTS-MG parent-report, this study supports the use of the ACTS-MG child-report for mothers’ PA parenting. However, further research is required to investigate the measurement of fathers’ PA parenting across racial groups
    corecore