350 research outputs found
Identification and Characterization of RcMADS1, an AGL24 Ortholog from the Holoparasitic Plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae)
10.1371/journal.pone.0067243PLoS ONE86-POLN
Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression
Antisense transcription through genic regions is pervasive in most genomes; however, its functional significance is still unclear. We are studying the role of antisense transcripts (COOLAIR) in the cold-induced, epigenetic silencing of Arabidopsis FLOWERING LOCUS C (FLC), a regulator of the transition to reproduction. Here we use single-molecule RNA FISH to address the mechanistic relationship of FLC and COOLAIR transcription at the cellular level. We demonstrate that while sense and antisense transcripts can co-occur in the same cell they are mutually exclusive at individual loci. Cold strongly upregulates COOLAIR transcription in an increased number of cells and through the mutually exclusive relationship facilitates shutdown of sense FLC transcription in cis. COOLAIR transcripts form dense clouds at each locus, acting to influence FLC transcription through changed H3K36me3 dynamics. These results may have general implications for other loci showing both sense and antisense transcription
Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor
Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R) proteins, that trigger strong immune responses including localized host cell death. The accelerated cell death 11 (acd11) “lesion mimic” mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown. In a screen for lazarus (laz) mutants that suppress acd11 death we identified two genes, LAZ2 and LAZ5. LAZ2 encodes the histone lysine methyltransferase SDG8, previously shown to epigenetically regulate flowering time via modification of histone 3 (H3). LAZ5 encodes an RPS4-like R-protein, defined by several dominant negative alleles. Microarray and chromatin immunoprecipitation analyses showed that LAZ2/SDG8 is required for LAZ5 expression and H3 lysine 36 trimethylation at LAZ5 chromatin to maintain a transcriptionally active state. We hypothesize that LAZ5 triggers cell death in the absence of ACD11, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity
Major-Effect Alleles at Relatively Few Loci Underlie Distinct Vernalization and Flowering Variation in Arabidopsis Accessions
We have explored the genetic basis of variation in vernalization requirement and
response in Arabidopsis accessions, selected on the basis of their phenotypic
distinctiveness. Phenotyping of F2 populations in different environments, plus
fine mapping, indicated possible causative genes. Our data support the
identification of FRI and FLC as candidates
for the major-effect QTL underlying variation in vernalization response, and
identify a weak FLC allele, caused by a Mutator-like
transposon, contributing to flowering time variation in two N. American
accessions. They also reveal a number of additional QTL that contribute to
flowering time variation after saturating vernalization. One of these was the
result of expression variation at the FT locus. Overall, our
data suggest that distinct phenotypic variation in the vernalization and
flowering response of Arabidopsis accessions is accounted for by variation that
has arisen independently at relatively few major-effect loci
Conversion of barley SNPs into PCR-based markers using dCAPS method
Molecular genetic research relies heavily on the ability to detect polymorphisms in DNA. Single nucleotide polymorphisms (SNPs) are the most frequent form of DNA variation in the genome. In combination with a PCR assay, the corresponding SNP can be analyzed as a derived cleaved amplified polymorphic sequence (dCAPS) marker. The dCAPS method exploits the well-known specificity of a restriction endonuclease for its recognition site and can be used to virtually detect any SNP. Here, we describe the use of the dCAPS method for detecting single-nucleotide changes by means of a barley EST, CK569932, PCR-based marker
Outcomes of Cardiac Transplantation in Highly Sensitized Pediatric Patients
Despite aggressive immunosuppressive therapy, pediatric orthotopic heart transplant (OHT) candidates with elevated pre-transplant panel reactive antibody (PRA) carry an increased risk of rejection and early graft failure following transplantation. This study has aimed to more specifically evaluate the outcomes of transplant candidates stratified by PRA values. Records of pediatric patients listed for OHT between April 2004 and July 2008 were reviewed (n = 101). Survival analysis was performed comparing patients with PRA < 25 to those with PRA > 25, as well as patients with PRA < 80 and PRA > 80. Patients with PRA > 25 had decreased survival compared with those with PRA < 25 after listing (P = 0.004). There was an even greater difference in survival between patients with PRA > 80 and those with PRA < 80 (P = 0.002). Similar analyses for the patients who underwent successful transplantation showed no significant difference in post-transplant survival between patients with a pre-transplant PRA > 25 and those with PRA < 25 (P = 0.23). A difference approaching significance was noted for patients with PRA > 80 compared with PRA < 80 (P = 0.066). Patients with significantly elevated pre-transplant PRAs at the time of listing have a significantly worse outcome compared to those with moderately increased PRA values or non-sensitized patients. Further study is necessary to guide physician and family treatment decisions at the time of listing
Estimating the regional distribution of men who have sex with men (MSM) based on Internet surveys
<p>Abstract</p> <p>Background</p> <p>Measurement of prevalence and incidence of infections in a hard to reach population like men who have sex with men (MSM) is hampered by its unknown size and regional distribution. Population-based surveys have recently been used to estimate the total number of MSM, but these surveys are usually not large enough to measure regional differences in the proportion of MSM in the population. We explored the use of the proportional regional distribution of participants of large internet-based surveys among MSM from Germany to estimate the regional distribution of MSM in Germany.</p> <p>Methods</p> <p>We compared participants from two separate MSM behavioural surveys with each other and with the distribution of user profiles of the largest contact and dating website for gay and other MSM in Germany in terms of the representativeness of the regional distribution. In addition, we compared the regional distribution of reportedly HIV positive survey participants with the regional distribution of HIV notifications within the national surveillance system that can be attributed to transmission through homosexual contacts.</p> <p>Results</p> <p>Regional distribution of survey participants was almost identical in both surveys, despite little overlap between survey participants. Slight discrepancies between surveys and user profiles could be observed. Proportional regional distribution of survey participants with HIV diagnosis resembled national surveillance data.</p> <p>Conclusion</p> <p>Considering the difficulties to obtain representative data by other sampling methods for "hidden" populations like MSM, internet-based surveys may provide an easy and low cost tool to estimate the regional population distribution – at least in Western post-industrialized countries. Some uncertainties remain about the exact place of residence of MSM in larger cities or catchment areas of these cities. Slightly different results from different datasets may be due to unequal popularity of MSM websites in different regions. The total population size of the MSM population can be estimated based on e.g. data from representative national population surveys. Both estimates can then be combined to calculate the absolute size of regional MSM populations.</p
Differential Interactions of the Autonomous Pathway RRM Proteins and Chromatin Regulators in the Silencing of Arabidopsis Targets
We have recently shown that two proteins containing RRM-type RNA-binding domains, FCA and FPA, originally identified through their role in flowering time control in Arabidopsis, silence transposons and other repeated sequences in the Arabidopsis genome. In flowering control, FCA and FPA function in the autonomous pathway with conserved chromatin regulators, the histone demethylase FLD and the MSI1-homologue FVE, a conserved WD-repeat protein found in many chromatin complexes. Here, we investigate how the RRM proteins interact genetically with these chromatin regulators at a range of loci in the Arabidopsis genome. We also investigate their interaction with the DNA methylation pathway. In several cases the RRM protein activity at least partially required a chromatin regulator to effect silencing. However, the interactions of the autonomous pathway components differed at each target analysed, most likely determined by certain properties of the target loci and/or other silencing pathways. We speculate that the RNA-binding proteins FCA and FPA function as part of a transcriptome surveillance mechanism linking RNA recognition with chromatin silencing mechanisms
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
Antagonistic Roles of SEPALLATA3, FT and FLC Genes as Targets of the Polycomb Group Gene CURLY LEAF
In Arabidopsis, mutations in the Pc-G gene CURLY LEAF (CLF) give early flowering plants with curled leaves. This phenotype is caused by mis-expression of the floral homeotic gene AGAMOUS (AG) in leaves, so that ag mutations largely suppress the clf phenotype. Here, we identify three mutations that suppress clf despite maintaining high AG expression. We show that the suppressors correspond to mutations in FPA and FT, two genes promoting flowering, and in SEPALLATA3 (SEP3) which encodes a co-factor for AG protein. The suppression of the clf phenotype is correlated with low SEP3 expression in all case and reveals that SEP3 has a role in promoting flowering in addition to its role in controlling floral organ identity. Genetic analysis of clf ft mutants indicates that CLF promotes flowering by reducing expression of FLC, a repressor of flowering. We conclude that SEP3 is the key target mediating the clf phenotype, and that the antagonistic effects of CLF target genes masks a role for CLF in promoting flowering
- …
