194 research outputs found

    General phase spaces: from discrete variables to rotor and continuum limits

    Full text link
    We provide a basic introduction to discrete-variable, rotor, and continuous-variable quantum phase spaces, explaining how the latter two can be understood as limiting cases of the first. We extend the limit-taking procedures used to travel between phase spaces to a general class of Hamiltonians (including many local stabilizer codes) and provide six examples: the Harper equation, the Baxter parafermionic spin chain, the Rabi model, the Kitaev toric code, the Haah cubic code (which we generalize to qudits), and the Kitaev honeycomb model. We obtain continuous-variable generalizations of all models, some of which are novel. The Baxter model is mapped to a chain of coupled oscillators and the Rabi model to the optomechanical radiation pressure Hamiltonian. The procedures also yield rotor versions of all models, five of which are novel many-body extensions of the almost Mathieu equation. The toric and cubic codes are mapped to lattice models of rotors, with the toric code case related to U(1) lattice gauge theory.Comment: 22 pages, 3 figures; part of special issue on Rabi model; v2 minor change

    Geometric Approach to Digital Quantum Information

    Full text link
    We present geometric methods for uniformly discretizing the continuous N-qubit Hilbert space. When considered as the vertices of a geometrical figure, the resulting states form the equivalent of a Platonic solid. The discretization technique inherently describes a class of pi/2 rotations that connect neighboring states in the set, i.e. that leave the geometrical figures invariant. These rotations are shown to generate the Clifford group, a general group of discrete transformations on N qubits. Discretizing the N-qubit Hilbert space allows us to define its digital quantum information content, and we show that this information content grows as N^2. While we believe the discrete sets are interesting because they allow extra-classical behavior--such as quantum entanglement and quantum parallelism--to be explored while circumventing the continuity of Hilbert space, we also show how they may be a useful tool for problems in traditional quantum computation. We describe in detail the discrete sets for one and two qubits.Comment: Introduction rewritten; 'Sample Application' section added. To appear in J. of Quantum Information Processin

    Josephson Amplifier for Qubit Readout

    Full text link
    We report on measurements of a Josephson amplifier (J-amp) suitable for quantum-state qubit readout in the microwave domain. It consists of two microstrip resonators which intersect at a Josephson ring modulator. A maximum gain of about 20 dB, a bandwidth of 9 MHz, and a center-frequency tunability of about 60 MHz with gain in excess of 10 dB have been attained for idler and signal of frequencies 6.4 GHz and 8.1 GHz, in accordance with theory. Maximum input power measurements of the J-amp show a relatively good agreement with theoretical prediction. We discuss how the amplifier characteristics can be improved.Comment: 9 pages, 4 figure

    Inelastic Microwave Photon Scattering off a Quantum Impurity in a Josephson-Junction Array

    Full text link
    Quantum fluctuations in an anharmonic superconducting circuit enable frequency conversion of individual incoming photons. This effect, linear in the photon beam intensity, leads to ramifications for the standard input-output circuit theory. We consider an extreme case of anharmonicity in which photons scatter off a small set of weak links within a Josephson junction array. We show that this quantum impurity displays Kondo physics and evaluate the elastic and inelastic photon scattering cross sections. These cross sections reveal many-body properties of the Kondo problem that are hard to access in its traditional fermionic version.Comment: 18 pages, 5 figures; v2: published versio

    Asymmetric frequency conversion in nonlinear systems driven by a biharmonic pump

    Get PDF
    A novel mechanism of asymmetric frequency conversion is investigated in nonlinear dispersive devices driven parametrically with a biharmonic pump. When the relative phase between the first and second harmonics combined in a two-tone pump is appropriately tuned, nonreciprocal frequency conversion, either upward or downward, can occur. Full directionality and efficiency of the conversion process is possible, provided that the distribution of pump power over the harmonics is set correctly. While this asymmetric conversion effect is generic, we describe its practical realization in a model system consisting of a current-biased, resistively-shunted Josephson junction (RSJ). Here, the multiharmonic Josephson oscillations, generated internally from the static current bias, provide the pump drive.Comment: 5+ pages, 4 pages supplement. Expanded and modified discussion, additional references and a new appendix in supplemental material detailing the calculation of Josephson harmonics in the RS

    Non-degenerate, three-wave mixing with the Josephson ring modulator

    Full text link
    The Josephson ring modulator (JRM) is a device, based on Josephson tunnel junctions, capable of performing non-degenerate mixing in the microwave regime without losses. The generic scattering matrix of the device is calculated by solving coupled quantum Langevin equations. Its form shows that the device can achieve quantum-limited noise performance both as an amplifier and a mixer. Fundamental limitations on simultaneous optimization of performance metrics like gain, bandwidth and dynamic range (including the effect of pump depletion) are discussed. We also present three possible integrations of the JRM as the active medium in a different electromagnetic environment. The resulting circuits, named Josephson parametric converters (JPC), are discussed in detail, and experimental data on their dynamic range are found to be in good agreement with theoretical predictions. We also discuss future prospects and requisite optimization of JPC as a preamplifier for qubit readout applications.Comment: 21 pages, 16 figures, 4 table
    corecore