747 research outputs found

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    Making Instruction Mobile

    Get PDF

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    It’s not which school but which set you’re in that matters: the influence of ability-grouping practices on student progress in mathematics

    Get PDF
    The mathematics achievement of a cohort of 955 students in 42 classes in six schools in London was followed over a four-year period, until they took their GCSEs in the summer of 2000. All six schools were regarded by Ofsted as providing a good standard of education, and all were involved in teacher-training partnerships with universities. Matched data on key stage 3 test scores and GCSE grades were available for 709 students, and these data were analysed in terms of the progress from key stage 3 test scores to GCSE grades. Although there were wide differences between schools in terms of overall GCSE grades, the average progress made by students was similar in all six schools. However, within each school, the progress made during key stage 4 varied greatly from set to set. Comparing students with the same key stage 3 scores, students placed in top sets averaged nearly half a GCSE grade higher than those in the other upper sets, who in turn averaged a third of a grade higher than those in lower sets, who in turn averaged around a third of a grade higher than those students placed in bottom sets. In the four schools that used formal whole-class teaching, the difference in GCSE grades between top and bottom sets, taking key stage 3 scores into account, ranged from just over 1 grade at GCSE to nearly 3 grades. At the schools using small-group and individualised teaching, the differences in value-added between sets were not significant. In two of the schools, a significant proportion of working class students were placed into lower sets than would be indicated by their key stage 3 test scores
    corecore