894 research outputs found
Reconstruction of Network Evolutionary History from Extant Network Topology and Duplication History
Genome-wide protein-protein interaction (PPI) data are readily available
thanks to recent breakthroughs in biotechnology. However, PPI networks of
extant organisms are only snapshots of the network evolution. How to infer the
whole evolution history becomes a challenging problem in computational biology.
In this paper, we present a likelihood-based approach to inferring network
evolution history from the topology of PPI networks and the duplication
relationship among the paralogs. Simulations show that our approach outperforms
the existing ones in terms of the accuracy of reconstruction. Moreover, the
growth parameters of several real PPI networks estimated by our method are more
consistent with the ones predicted in literature.Comment: 15 pages, 5 figures, submitted to ISBRA 201
Network Archaeology: Uncovering Ancient Networks from Present-day Interactions
Often questions arise about old or extinct networks. What proteins interacted
in a long-extinct ancestor species of yeast? Who were the central players in
the Last.fm social network 3 years ago? Our ability to answer such questions
has been limited by the unavailability of past versions of networks. To
overcome these limitations, we propose several algorithms for reconstructing a
network's history of growth given only the network as it exists today and a
generative model by which the network is believed to have evolved. Our
likelihood-based method finds a probable previous state of the network by
reversing the forward growth model. This approach retains node identities so
that the history of individual nodes can be tracked. We apply these algorithms
to uncover older, non-extant biological and social networks believed to have
grown via several models, including duplication-mutation with complementarity,
forest fire, and preferential attachment. Through experiments on both synthetic
and real-world data, we find that our algorithms can estimate node arrival
times, identify anchor nodes from which new nodes copy links, and can reveal
significant features of networks that have long since disappeared.Comment: 16 pages, 10 figure
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter
An in-situ calibration of a logarithmic periodic dipole antenna with a
frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of
a radio station system used for detection of cosmic ray induced air showers at
the Engineering Radio Array of the Pierre Auger Observatory, the so-called
Auger Engineering Radio Array (AERA). The directional and frequency
characteristics of the broadband antenna are investigated using a remotely
piloted aircraft (RPA) carrying a small transmitting antenna. The antenna
sensitivity is described by the vector effective length relating the measured
voltage with the electric-field components perpendicular to the incoming signal
direction. The horizontal and meridional components are determined with an
overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} %
respectively. The measurement is used to correct a simulated response of the
frequency and directional response of the antenna. In addition, the influence
of the ground conductivity and permittivity on the antenna response is
simulated. Both have a negligible influence given the ground conditions
measured at the detector site. The overall uncertainties of the vector
effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in
the square root of the energy fluence for incoming signal directions with
zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is
unchanged with respect to v2. 39 pages, 15 figures, 2 table
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Automatic Network Fingerprinting through Single-Node Motifs
Complex networks have been characterised by their specific connectivity
patterns (network motifs), but their building blocks can also be identified and
described by node-motifs---a combination of local network features. One
technique to identify single node-motifs has been presented by Costa et al. (L.
D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett.,
87, 1, 2009). Here, we first suggest improvements to the method including how
its parameters can be determined automatically. Such automatic routines make
high-throughput studies of many networks feasible. Second, the new routines are
validated in different network-series. Third, we provide an example of how the
method can be used to analyse network time-series. In conclusion, we provide a
robust method for systematically discovering and classifying characteristic
nodes of a network. In contrast to classical motif analysis, our approach can
identify individual components (here: nodes) that are specific to a network.
Such special nodes, as hubs before, might be found to play critical roles in
real-world networks.Comment: 16 pages (4 figures) plus supporting information 8 pages (5 figures
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
Transition and Resilience in the Kansas Flint Hills
The tallgrass prairie has persisted in the Flint Hills of east-central Kansas for both biophysical and socioeconomic reasons, and has been one of the key elements in the development of the region. A population boom in the latter part of the 19th century and the subsequent increase in cattle in the 1860s-1870s were key factors in the transition of this landscape into a major cattle grazing region by the turn of the 20th century. At various points in the past 150 years, this social ecosystem has exhibited remarkable resilience in episodes of both drought and over-grazing. The resilience of the bluestem pastures had implications for stability in the rural economy. Yet, the land use regimes have undergone change since Euro-American arrival, thus the human signature on the land is by no means static. We approach the human-environment relationship as an ecological dialogue that includes both biophysical and social elements mutually shaping each other, and driven by human interests as much as biophysical factors. Current threats to the tallgrass prairie, including fragmentation and invasive species are discussed
- …
