5,760 research outputs found

    Variant Monte Carlo algorithm for driven elastic strings in random media

    Full text link
    We discuss the non-local Variant Monte Carlo algorithm which has been successfully employed in the study of driven elastic strings in disordered media at the depinning threshold. Here we prove two theorems, which establish that the algorithm satisfies the crucial no-passing rule and that, after some initial time, the string exclusively moves forward. The Variant Monte Carlo algorithm overcomes the shortcomings of local methods, as we show by analyzing the depinning threshold of a single-pin problem.Comment: 6 pages, 2 figures, proceedings of Conference on Computational Physics, CCP2004 (Genova, Italy

    Thermal fluctuations in pinned elastic systems: field theory of rare events and droplets

    Full text link
    Using the functional renormalization group (FRG) we study the thermal fluctuations of elastic objects, described by a displacement field u and internal dimension d, pinned by a random potential at low temperature T, as prototypes for glasses. A challenge is how the field theory can describe both typical (minimum energy T=0) configurations, as well as thermal averages which, at any non-zero T as in the phenomenological droplet picture, are dominated by rare degeneracies between low lying minima. We show that this occurs through an essentially non-perturbative *thermal boundary layer* (TBL) in the (running) effective action Gamma[u] at T>0 for which we find a consistent scaling ansatz to all orders. The TBL resolves the singularities of the T=0 theory and contains rare droplet physics. The formal structure of this TBL is explored around d=4 using a one loop Wilson RG. A more systematic Exact RG (ERG) method is employed and tested on d=0 models. There we obtain precise relations between TBL quantities and droplet probabilities which are checked against exact results. We illustrate how the TBL scaling remains consistent to all orders in higher d using the ERG and how droplet picture results can be retrieved. Finally, we solve for d=0,N=1 the formidable "matching problem" of how this T>0 TBL recovers a critical T=0 field theory. We thereby obtain the beta-function at T=0, *all ambiguities removed*, displayed here up to four loops. A discussion of d>4 case and an exact solution at large d are also provided

    Measuring functional renormalization group fixed-point functions for pinned manifolds

    Get PDF
    Exact numerical minimization of interface energies is used to test the functional renormalization group (FRG) analysis for interfaces pinned by quenched disorder. The fixed-point function R(u) (the correlator of the coarse-grained disorder) is computed. In dimensions D=d+1, a linear cusp in R''(u) is confirmed for random bond (d=1,2,3), random field (d=0,2,3), and periodic (d=2,3) disorders. The functional shocks that lead to this cusp are seen. Small, but significant, deviations from 1-loop FRG results are compared to 2-loop corrections. The cross-correlation for two copies of disorder is compared with a recent FRG study of chaos.Comment: 4 pages, 4 figure

    Monte Carlo Dynamics of driven Flux Lines in Disordered Media

    Full text link
    We show that the common local Monte Carlo rules used to simulate the motion of driven flux lines in disordered media cannot capture the interplay between elasticity and disorder which lies at the heart of these systems. We therefore discuss a class of generalized Monte Carlo algorithms where an arbitrary number of line elements may move at the same time. We prove that all these dynamical rules have the same value of the critical force and possess phase spaces made up of a single ergodic component. A variant Monte Carlo algorithm allows to compute the critical force of a sample in a single pass through the system. We establish dynamical scaling properties and obtain precise values for the critical force, which is finite even for an unbounded distribution of the disorder. Extensions to higher dimensions are outlined.Comment: 4 pages, 3 figure

    Derivation of the Functional Renormalization Group Beta-Function at order 1/N for Manifolds Pinned by Disorder

    Full text link
    In an earlier publication, we have introduced a method to obtain, at large N, the effective action for d-dimensional manifolds in a N-dimensional disordered environment. This allowed to obtain the Functional Renormalization Group (FRG) equation for N=infinity and was shown to reproduce, with no need for ultrametric replica symmetry breaking, the predictions of the Mezard-Parisi solution. Here we compute the corrections at order 1/N. We introduce two novel complementary methods, a diagrammatic and an algebraic one, to perform the complicated resummation of an infinite number of loops, and derive the beta-function of the theory to order 1/N. We present both the effective action and the corresponding functional renormalization group equations. The aim is to explain the conceptual basis and give a detailed account of the novel aspects of such calculations. The analysis of the FRG flow, comparison with other studies, and applications, e.g. to the strong-coupling phase of the Kardar-Parisi-Zhang equation are examined in a subsequent publication.Comment: 62 pages, 97 figure

    Broad relaxation spectrum and the field theory of glassy dynamics for pinned elastic systems

    Full text link
    We study thermally activated, low temperature equilibrium dynamics of elastic systems pinned by disorder using one loop functional renormalization group (FRG). Through a series of increasingly complete approximations, we investigate how the field theory reveals the glassy nature of the dynamics, in particular divergent barriers and barrier distributions controling the spectrum of relaxation times. A naive single relaxation time approximation for each wavevector is found to be unsatisfactory. A second approximation based on a random friction model, yields a size (L) dependent log-normal distribution of relaxation times (mean barriers ~L^\theta and variance ~ L^{\theta/2}) and a procedure to estimate dynamical scaling functions. Finally, we study the full structure of the running dynamical effective action within the field theory. We find that relaxation time distributions are non-trivial (broad but not log-normal) and encoded in a closed hierarchy of FRG equations. A thermal boundary layer ansatz (TBLA) appears as a consistent solution. It extends the one discovered in the statics which was shown to embody droplet thermal fluctuations. Although perturbative control remains a challenge, the structure of the dynamical TBLA which encodes barrier distributions opens the way for deeper understanding of the field theory approach to glasses

    Wang-Landau study of the critical behaviour of the bimodal 3D-Random Field Ising Model

    Full text link
    We apply the Wang-Landau method to the study of the critical behaviour of the three dimensional Random Field Ising Model with a bimodal probability distribution. Our results show that for high values of the random field intensity the transition is first order, characterized by a double-peaked energy probability distribution at the transition temperature. On the other hand, the transition looks continuous for low values of the field intensity. In spite of the large sample to sample fluctuations observed, the double peak in the probability distribution is always present for high field

    Dislocations in the ground state of the solid-on-solid model on a disordered substrate

    Full text link
    We investigate the effects of topological defects (dislocations) to the ground state of the solid-on-solid (SOS) model on a simple cubic disordered substrate utilizing the min-cost-flow algorithm from combinatorial optimization. The dislocations are found to destabilize and destroy the elastic phase, particularly when the defects are placed only in partially optimized positions. For multi defect pairs their density decreases exponentially with the vortex core energy. Their mean distance has a maximum depending on the vortex core energy and system size, which gives a fractal dimension of 1.27±0.021.27 \pm 0.02. The maximal mean distances correspond to special vortex core energies for which the scaling behavior of the density of dislocations change from a pure exponential decay to a stretched one. Furthermore, an extra introduced vortex pair is screened due to the disorder-induced defects and its energy is linear in the vortex core energy.Comment: 6 pages RevTeX, eps figures include

    Field theory conjecture for loop-erased random walks

    Full text link
    We give evidence that the functional renormalization group (FRG), developed to study disordered systems, may provide a field theoretic description for the loop-erased random walk (LERW), allowing to compute its fractal dimension in a systematic expansion in epsilon=4-d. Up to two loop, the FRG agrees with rigorous bounds, correctly reproduces the leading logarithmic corrections at the upper critical dimension d=4, and compares well with numerical studies. We obtain the universal subleading logarithmic correction in d=4, which can be used as a further test of the conjecture.Comment: 5 page

    2-loop Functional Renormalization Group Theory of the Depinning Transition

    Full text link
    We construct the field theory which describes the universal properties of the quasi-static isotropic depinning transition for interfaces and elastic periodic systems at zero temperature, taking properly into account the non-analytic form of the dynamical action. This cures the inability of the 1-loop flow-equations to distinguish between statics and quasi-static depinning, and thus to account for the irreversibility of the latter. We prove two-loop renormalizability, obtain the 2-loop beta-function and show the generation of "irreversible" anomalous terms, originating from the non-analytic nature of the theory, which cause the statics and driven dynamics to differ at 2-loop order. We obtain the roughness exponent zeta and dynamical exponent z to order epsilon^2. This allows to test several previous conjectures made on the basis of the 1-loop result. First it demonstrates that random-field disorder does indeed attract all disorder of shorter range. It also shows that the conjecture zeta=epsilon/3 is incorrect, and allows to compute the violations, as zeta=epsilon/3 (1 + 0.14331 epsilon), epsilon=4-d. This solves a longstanding discrepancy with simulations. For long-range elasticity it yields zeta=epsilon/3 (1 + 0.39735 epsilon), epsilon=2-d (vs. the standard prediction zeta=1/3 for d=1), in reasonable agreement with the most recent simulations. The high value of zeta approximately 0.5 found in experiments both on the contact line depinning of liquid Helium and on slow crack fronts is discussed.Comment: 32 pages, 17 figures, revtex
    corecore