8,029 research outputs found
System Size and Energy Dependence of Elliptic Flow
The elliptic flow v2 is presented for the Cu+Cu collisions at sqrt{s_NN} =
62.4 and 200 GeV, as a function of pseudorapidity. Comparison to results for
the Au+Au collisions at the same energies shows a reduction of about 20% in the
flow observed for a centrality selection of 0-40%. The centrality dependent
flow, expressed as a function of the number of participants N_part, is compared
for the Cu+Cu and Au+Au systems using two definitions of eccentricity, the
standard definition epsilon_standard and a participant eccentricity
epsilon_part. The v2 / as a function of N_part, for the Au+Au
and Cu+Cu collisions are consistent within errors, while v2 /
gives unrealistically large values for Cu+Cu, especially for
central collision.Comment: 3 pages, 3 figures, talk given at Particles and Nuclei International
Conference (PANIC05), Santa Fe, New Mexico, 24-28 Oct 2005. Proceeding to be
published by American Institute of Physic
The Importance of Correlations and Fluctuations on the Initial Source Eccentricity in High-Energy Nucleus-Nucleus Collisions
In this paper, we investigate various ways of defining the initial source
eccentricity using the Monte Carlo Glauber (MCG) approach. In particular, we
examine the participant eccentricity, which quantifies the eccentricity of the
initial source shape by the major axes of the ellipse formed by the interaction
points of the participating nucleons. We show that reasonable variation of the
density parameters in the Glauber calculation, as well as variations in how
matter production is modeled, do not significantly modify the already
established behavior of the participant eccentricity as a function of collision
centrality. Focusing on event-by-event fluctuations and correlations of the
distributions of participating nucleons we demonstrate that, depending on the
achieved event-plane resolution, fluctuations in the elliptic flow magnitude
lead to most measurements being sensitive to the root-mean-square, rather
than the mean of the distribution. Neglecting correlations among
participants, we derive analytical expressions for the participant eccentricity
cumulants as a function of the number of participating nucleons,
\Npart,keeping non-negligible contributions up to \ordof{1/\Npart^3}. We
find that the derived expressions yield the same results as obtained from
mixed-event MCG calculations which remove the correlations stemming from the
nuclear collision process. Most importantly, we conclude from the comparison
with MCG calculations that the fourth order participant eccentricity cumulant
does not approach the spatial anisotropy obtained assuming a smooth nuclear
matter distribution. In particular, for the Cu+Cu system, these quantities
deviate from each other by almost a factor of two over a wide range in
centrality.Comment: 18 pages, 10 figures, submitted to PR
Evidence of Final-State Suppression of High-p_T Hadrons in Au + Au Collisions Using d + Au Measurements at RHIC
Transverse momentum spectra of charged hadrons with 6 GeV/c have
been measured near mid-rapidity (0.2 1.4) by the PHOBOS experiment
at RHIC in Au + Au and d + Au collisions at . The spectra for different collision centralities are compared to collisions at the same energy. The resulting nuclear modification
factor for central Au + Au collisions shows evidence of strong suppression of
charged hadrons in the high- region ( GeV/c). In contrast, the d +
Au nuclear modification factor exhibits no suppression of the high-
yields. These measurements suggest a large energy loss of the high-
particles in the highly interacting medium created in the central Au + Au
collisions. The lack of suppression in d + Au collisions suggests that it is
unlikely that initial state effects can explain the suppression in the central
Au + Au collisions.Comment: 3 pages, 4 figures, International Europhysics Conference on High
Energy Physics EPS (July 17th-23rd 2003) in Aachen, German
Centrality dependence of charged antiparticle to particle ratios near mid-rapidity in d+Au collisions at sqrt(s_NN)=200 GeV
The ratios of the yields of charged antiparticles to particles have been
obtained for pions, kaons, and protons near mid-rapidity for d+Au collisions at
sqrt(s_NN) = 200 GeV as a function of centrality. The reported values represent
the ratio of the yields averaged over the rapidity range of 0.1<y_pi<1.3 and
0<y_(K,p)<0.8, where positive rapidity is in the deuteron direction, and for
transverse momenta 0.1<p_(T)^(pi,K)<1.0 GeV/c and 0.3<p_(T)^(p)<1.0 GeV/c.
Within the uncertainties, a lack of centrality dependence is observed in all
three ratios. The data are compared to results from other systems and model
calculations.Comment: 6 pages, 4 figures, submitted to PR
System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions
We present the first measurements of the pseudorapidity distribution of
primary charged particles in Cu+Cu collisions as a function of collision
centrality and energy, \sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of
pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu
and Au+Au results, we find that the total number of produced charged particles
and the rough shape (height and width) of the pseudorapidity distributions are
determined by the number of nucleon participants. More detailed studies reveal
that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity
distributions over the full range of pseudorapidity occurs for the same
Npart/2A value rather than the same Npart value. In other words, it is the
collision geometry rather than just the number of nucleon participants that
drives the detailed shape of the pseudorapidity distribution and its centrality
dependence at RHIC energies.Comment: Submitted to Physical Review Letter
Au+Au Reactions at the AGS: Experiments E866 and E917
Particle production and correlation functions from Au+Au reactions have been
measured as a function of both beam energy (2-10.7AGeV) and impact parameter.
These results are used to probe the dynamics of heavy-ion reactions, confront
hadronic models over a wide range of conditions and to search for the onset of
new phenomena.Comment: 12 pages, 14 figures, Talk presented at Quark Matter '9
System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow
This paper presents measurements of the elliptic flow of charged particles as
a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and
200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider
(RHIC). The elliptic flow in Cu-Cu collisions is found to be significant even
for the most central events. For comparison with the Au-Au results, it is found
that the detailed way in which the collision geometry (eccentricity) is
estimated is of critical importance when scaling out system-size effects. A new
form of eccentricity, called the participant eccentricity, is introduced which
yields a scaled elliptic flow in the Cu-Cu system that has the same relative
magnitude and qualitative features as that in the Au-Au system
Latest Results from PHOBOS
This manuscript contains a summary of the latest physics results from PHOBOS,
as reported at Quark Matter 2006. Highlights include the first measurement from
PHOBOS of dynamical elliptic flow fluctuations as well as an explanation of
their possible origin, two-particle correlations, identified particle ratios,
identified particle spectra and the latest results in global charged particle
production.Comment: 9 pages, 7 figures, PHOBOS plenary proceedings for Quark Matter 200
- …
