554 research outputs found

    Warehouse Consolidation

    Get PDF
    The Hagie company is having difficulty using their current organization system of parts and how to pick them to meet their goal of building two sprayers a day. This is creating a problem for the company because parts are in multiple locations which is making it difficult to quickly get parts.This project will immediately affect the workers of warehouse one and five. Later affect the rest of the factory because they will have their parts faster, in a more organized manner

    Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux

    Get PDF
    AbstractThe immunosuppressant drug FK506 binds to the immunophilin protein FKBP12 and inhibits its prolyl isomerase activity. Immunosuppresive actions, however, are mediated via an FK506-FKBP12 inhibition of the Ca2+-activated phosphatase calcineurin. Physiologic cellular roles for FKBP12 have remained unclear. FKBP12 is physically associated with the RyR and IP3R Ca2+ channels in the absence of FK506, with added FK506 disrupting these complexes. Dissociation of FKBP12 results in alteration of channel Ca2+ conductance in both cases. We now report that calcineurin is physiologically associated with the IP3R-FKBP12 and RyR-FKBP12 receptor complexes and that this interaction can be disrupted by FK506 or rapamycin. Calcineurin anchored to the IP3R via FKBP12 regulates the phosphorylation status of the receptor, resulting in a dynamic Ca2+-sensitive regulation of IP3-mediated Ca2+ flux

    Hagie Warehouse Consolidation

    Get PDF
    Hagie Manufacturing is a small manufacturer of agricultural sprayers that recently partnered with John Deere. They have a manufacturing and storage facility in central Iowa. Hagie Manufacturing is having difficulty using their current organization system of parts and how to pick them to meet their increased goal of building more (33%) sprayers a day. This is creating a problem for the company because parts are in multiple locations which makes it difficult to quickly get parts to where they are needed in a correct rotating habit efficiently. This project will immediately affect the workers of warehouse one and five on how they go about their work, and later affect the rest of the factory because they will have their parts faster, in a more organized manner. Our solution could be applied to other clients by showing them tools such as flow planner to help create a more efficient and lean warehouse system. We aren’t developing any new product, but the systems and methods of creating efficiency can be applied in many places

    Single Channel Function of Inositol 1,4,5-trisphosphate Receptor Type-1 and -2 Isoform Domain-Swap Chimeras

    Get PDF
    The InsP3R proteins have three recognized domains, the InsP3-binding, regulatory/coupling, and channel domains (Mignery, G.A., and T.C. Südhof. 1990. EMBO J. 9:3893–3898). The InsP3 binding domain and the channel-forming domain are at opposite ends of the protein. Ligand regulation of the channel must involve communication between these different regions of the protein. This communication likely involves the interceding sequence (i.e., the regulatory/coupling domain). The single channel functional attributes of the full-length recombinant type-1, -2, and -3 InsP3R channels have been defined. Here, two type-1/type-2 InsP3R regulatory/coupling domain chimeras were created and their single channel function defined. One chimera (1-2-1) contained the type-2 regulatory/coupling domain in a type-1 backbone. The other chimera (2-1-2) contained the type-1 regulatory/coupling domain in a type-2 backbone. These chimeric proteins were expressed in COS cells, isolated, and then reconstituted in proteoliposomes. The proteoliposomes were incorporated into artificial planar lipid bilayers and the single-channel function of the chimeras defined. The chimeras had permeation properties like that of wild-type channels. The ligand regulatory properties of the chimeras were altered. The InsP3 and Ca2+ regulation had some unique features but also had features in common with wild-type channels. These results suggest that different independent structural determinants govern InsP3R permeation and ligand regulation. It also suggests that ligand regulation is a multideterminant process that involves several different regions of the protein. This study also demonstrates that a chimera approach can be applied to define InsP3R structure-function

    Applications of a damage tolerance analysis methodology in aircraft design and production

    Get PDF
    Objectives of customer mandated aircraft structural integrity initiatives in design are to guide material selection, to incorporate fracture resistant concepts in the design, to utilize damage tolerance based allowables and planned inspection procedures necessary to enhance the safety and reliability of manned flight vehicles. However, validated fracture analysis tools for composite structures are needed to accomplish these objectives in a timely and economical manner. This paper briefly describes the development, validation, and application of a damage tolerance methodology for composite airframe structures. A closed-form analysis code, entitled SUBLAM was developed to predict the critical biaxial strain state necessary to cause sublaminate buckling-induced delamination extension in an impact damaged composite laminate. An embedded elliptical delamination separating a thin sublaminate from a thick parent laminate is modelled. Predicted failure strains were correlated against a variety of experimental data that included results from compression after impact coupon and element tests. An integrated analysis package was developed to predict damage tolerance based margin-of-safety (MS) using NASTRAN generated loads and element information. Damage tolerance aspects of new concepts are quickly and cost-effectively determined without the need for excessive testing

    Targeting of inositol 1,4,5-trisphosphate receptor to the endoplasmic reticulum by its first transmembrane domain

    Get PDF
    Targeting of IP3R (inositol 1,4,5-trisphosphate receptors) to membranes of the ER (endoplasmic reticulum) and their retention within ER or trafficking to other membranes underlies their ability to generate spatially organized Ca2+ signals. N-terminal fragments of IP3R1 (type 1 IP3R) were tagged with enhanced green fluorescent protein, expressed in COS-7 cells and their distribution was determined by confocal microscopy and subcellular fractionation. Localization of IP3R1 in the ER requires translation of between 26 and 34 residues beyond the end of the first transmembrane domain (TMD1), a region that includes TMD2 (second transmembrane domain). Replacement of these post-TMD1 residues with unrelated sequences of similar length (24–36 residues) partially mimicked the native residues. We conclude that for IP3R approx. 30 residues after TMD1 must be translated to allow a signal sequence within TMD1 to be extruded from the ribosome and mediate co-translational targeting to the ER. Hydrophobic residues within TMD1 and TMD2 then ensure stable association with the ER membrane

    Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate

    Get PDF
    Inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are channels responsible for calcium release from the endoplasmic reticulum (ER). We show that the anti-apoptotic protein Bcl-2 (either wild type or selectively localized to the ER) significantly inhibited InsP3-mediated calcium release and elevation of cytosolic calcium in WEHI7.2 T cells. This inhibition was due to an effect of Bcl-2 at the level of InsP3Rs because responses to both anti-CD3 antibody and a cell-permeant InsP3 ester were decreased. Bcl-2 inhibited the extent of calcium release from the ER of permeabilized WEHI7.2 cells, even at saturating concentrations of InsP3, without decreasing luminal calcium concentration. Furthermore, Bcl-2 reduced the open probability of purified InsP3Rs reconstituted into lipid bilayers. Bcl-2 and InsP3Rs were detected together in macromolecular complexes by coimmunoprecipitation and blue native gel electrophoresis. We suggest that this functional interaction of Bcl-2 with InsP3Rs inhibits InsP3R activation and thereby regulates InsP3-induced calcium release from the ER

    Single-Channel Properties in Endoplasmic Reticulum Membrane of Recombinant Type 3 Inositol Trisphosphate Receptor

    Get PDF
    The inositol 1,4,5-trisphosphate receptor (InsP3R) is an intracellular Ca2+-release channel localized in endoplasmic reticulum (ER) with a central role in complex Ca2+ signaling in most cell types. A family of InsP3Rs encoded by several genes has been identified with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. This diversity suggests that cells require distinct InsP3Rs, but the functional correlates of this diversity are largely unknown. Lacking are single-channel recordings of the recombinant type 3 receptor (InsP3R-3), a widely expressed isoform also implicated in plasma membrane Ca2+ influx and apoptosis. Here, we describe functional expression and single-channel recording of recombinant rat InsP3R-3 in its native membrane environment. The approach we describe suggests a novel strategy for expression and recording of recombinant ER-localized ion channels in the ER membrane. Ion permeation and channel gating properties of the rat InsP3R-3 are strikingly similar to those of Xenopus type 1 InsP3R in the same membrane. Using two different two-electrode voltage clamp protocols to examine calcium store-operated calcium influx, no difference in the magnitude of calcium influx was observed in oocytes injected with rat InsP3R-3 cRNA compared with control oocytes. Our results suggest that if cellular expression of multiple InsP3R isoforms is a mechanism to modify the temporal and spatial features of [Ca2+]i signals, then it must be achieved by isoform-specific regulation or localization of various types of InsP3Rs that have relatively similar Ca2+ permeation properties
    corecore