648 research outputs found
The arity gap of polynomial functions over bounded distributive lattices
Let A and B be arbitrary sets with at least two elements. The arity gap of a
function f: A^n \to B is the minimum decrease in its essential arity when
essential arguments of f are identified. In this paper we study the arity gap
of polynomial functions over bounded distributive lattices and present a
complete classification of such functions in terms of their arity gap. To this
extent, we present a characterization of the essential arguments of polynomial
functions, which we then use to show that almost all lattice polynomial
functions have arity gap 1, with the exception of truncated median functions,
whose arity gap is 2.Comment: 7 page
A generalization of Goodstein's theorem: interpolation by polynomial functions of distributive lattices
We consider the problem of interpolating functions partially defined over a
distributive lattice, by means of lattice polynomial functions. Goodstein's
theorem solves a particular instance of this interpolation problem on a
distributive lattice L with least and greatest elements 0 and 1, resp.: Given
an n-ary partial function f over L, defined on all 0-1 tuples, f can be
extended to a lattice polynomial function p over L if and only if f is
monotone; in this case, the interpolating polynomial p is unique. We extend
Goodstein's theorem to a wider class of n-ary partial functions f over a
distributive lattice L, not necessarily bounded, where the domain of f is a
cuboid of the form D={a1,b1}x...x{an,bn} with ai<bi, and determine the class of
such partial functions which can be interpolated by lattice polynomial
functions. In this wider setting, interpolating polynomials are not necessarily
unique; we provide explicit descriptions of all possible lattice polynomial
functions which interpolate these partial functions, when such an interpolation
is available.Comment: 12 page
An Ordinal Approach to Risk Measurement
In this short note, we aim at a qualitative framework for modeling multivariate risk. To this extent, we consider completely distributive lattices as underlying universes, and make use of lattice functions to formalize the notion of risk measure. Several properties of risk measures are translated into this general setting, and used to provide axiomatic characterizations. Moreover, a notion of quantile of a lattice-valued random variable is proposed, which shown to retain several desirable properties of its real-valued counterpart.lattice; risk measure; Sugeno integral; quantile.
Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices
We give several characterizations of discrete Sugeno integrals over bounded
distributive lattices, as particular cases of lattice polynomial functions,
that is, functions which can be represented in the language of bounded lattices
using variables and constants. We also consider the subclass of term functions
as well as the classes of symmetric polynomial functions and weighted minimum
and maximum functions, and present their characterizations, accordingly.
Moreover, we discuss normal form representations of these functions
Axiomatizations of quasi-polynomial functions on bounded chains
Two emergent properties in aggregation theory are investigated, namely
horizontal maxitivity and comonotonic maxitivity (as well as their dual
counterparts) which are commonly defined by means of certain functional
equations. We completely describe the function classes axiomatized by each of
these properties, up to weak versions of monotonicity in the cases of
horizontal maxitivity and minitivity. While studying the classes axiomatized by
combinations of these properties, we introduce the concept of quasi-polynomial
function which appears as a natural extension of the well-established notion of
polynomial function. We give further axiomatizations for this class both in
terms of functional equations and natural relaxations of homogeneity and median
decomposability. As noteworthy particular cases, we investigate those
subclasses of quasi-term functions and quasi-weighted maximum and minimum
functions, and provide characterizations accordingly
- …
