604 research outputs found
Upregulated expression of oncomodulin, the beta isoform of parvalbumin, in perikarya and axons in the diencephalon of parvalbumin knockout mice
The calcium-binding proteins parvalbumin, calbindin D-28k, calretinin and calcineurin are present in subsets of GABAergic gigantic calyciform presynaptic terminals of the reticular thalamic nucleus (RTN). Previously it was hypothesized that GABA and calcium-binding proteins including parvalbumin are not only colocalized in the same neuron subpopulation, but that GABA synthesis and parvalbumin expression could be also genetically regulated by a common mechanism. Moreover, parvalbumin expression levels could influence GABA synthesis. For this, we analyzed GABA immunoreactivity in RTN gigantic calyciform presynaptic terminals of parvalbumin–deficient (PV−/−) mice. With respect to GABA immunoreactivity we found no differences compared to wild–type animals. However, using a polyclonal parvalbumin antibody raised against full-length rat muscle parvalbumin on brain sections of PV−/− mice, we observed paradoxical parvalbumin immunoreactivity in partly varicose axons in the diencephalon, mainly in the lamina medullaris externa surrounding the thalamus. A detailed immunohistochemical, biochemical and molecular biological analysis revealed this immunoreactivity to be the result of an upregulation of oncomodulin (OM), the mammalian beta isoform of parvalbumin in PV−/− mice. In addition, OM was present in a sparse subpopulation of neurons in the thalamus and in the dentate gyrus. OM expression has not been observed before in neurons of the mammalian brain; its expression was restricted to outer hair cells in the organ of Corti. Our results indicate that the absence of parvalbumin has no major effect on the GABA-synthesizing system in RTN presynaptic terminals excluding a direct effect of parvalbumin on this regulation. However, a likely homeostatic mechanism is induced resulting in the upregulation of OM in selected axons and neuronal perikarya. Our results warrant further detailed investigations on the putative role of OM in the brain
Hall effect in quasi one-dimensional organic conductors
We study the Hall effect in a system of weakly coupled Luttinger Liquid
chains, using a Memory function approach to compute the Hall constant in the
presence of umklapp scattering along the chains. In this approximation, the
Hall constant decomposes into two terms: a high-frequency term and a Memory
function term. For the case of zero umklapp scattering, where the Memory
function vanishes, the Hall constant is simply the band value, in agreement
with former results in a similar model with no dissipation along the chains.
With umklapp scattering along the chains, we find a power-law temperature
dependance of the Hall constant. We discuss the applications to quasi 1D
organic conductors at high temperatures.Comment: Proceedings of the ISCOM conference "Sixth International Symposium on
Crystalline Organic Metals, Superconductors, and Ferromagnets", Key West,
Florida, USA (Sept. 2005), to be plublished in the Journal of Low Temperature
Physic
Getting It on Record: Issues and Strategies for Ethnographic Practice in Recording Studios
The recording studio has been somewhat neglected as a site for ethnographic fieldwork in the field of ethno-musicology and, moreover, the majority of published studies tend to overlook the specific concerns faced by the researcher within these contexts. Music recording studios can be places of creativity, artistry, and collaboration, but they often also involve challenging, intimidating, and fractious relations. Given that recording studios are, first and foremost, concerned with documenting musicians’ performances, we discuss the concerns of getting studio interactions “on record” in terms of access, social relations, and methods of data collection. This article reflects on some of the issues we faced when conducting our fieldwork within British music recording facilities and makes suggestions based on strategies that we employed to address these issues
String breaking by dynamical fermions in three-dimensional lattice QCD
The first observation is made of hadronic string breaking due to dynamical
fermions in zero temperature lattice QCD. The simulations are done for SU(2)
color in three dimensions, with two flavors of staggered fermions. The results
have clear implications for the large scale simulations that are being done to
search (so far, without success) for string breaking in four-dimensional QCD.
In particular, string breaking is readily observed using only Wilson loops to
excite a static quark-antiquark pair. Improved actions on coarse lattices are
used, providing an extremely efficient means to access the quark separations
and propagation times at which string breaking occurs.Comment: Revised version to appear in Physical Review D, has additional
discussion of the results, additional references, modified title, larger
figure
Reactive Hall constant of Strongly Correlated Electrons
The zero-temperature Hall response within tight-binding models of correlated
electrons is studied. Using the linear response theory and a linearization in
the magnetic field B, a general relation for the reactive (zero frequency) Hall
constant in the fast (transport) limit is derived, involving only matrix
elements between the lowest excited states at B=0; for noninteracting fermions,
the Boltzmann expression is reproduced. For a Fermi liquid with a well defined
Fermi surface and linear gapless excitations an analogous expression is found
more generally. In the specific case of quasi-one-dimensional correlated
systems a relation of to the charge stiffness D is recovered. Similar
analysis is performed and discussed for D and the compressibility.Comment: 8 pages, submitted to Phys.Rev.
X-Ray Scattering Measurements of the Transient Structure of a Driven Charge-Density-Wave
We report time-resolved x-ray scattering measurements of the transient
structural response of the sliding {\bf Q} charge-density-wave (CDW) in
NbSe to a reversal of the driving electric field. The observed time scale
characterizing this response at 70K varies from 15 msec for driving
fields near threshold to 2 msec for fields well above threshold. The
position and time-dependent strain of the CDW is analyzed in terms of a
phenomenological equation of motion for the phase of the CDW order parameter.
The value of the damping constant, eV
seconds \AA, is in excellent agreement with the value
determined from transport measurements. As the driving field approaches
threshold from above, the line shape becomes bimodal, suggesting that the CDW
does not depin throughout the entire sample at one well-defined voltage.Comment: revtex 3.0, 7 figure
Temporally ordered collective creep and dynamic transition in the charge-density-wave conductor NbSe3
We have observed an unusual form of creep at low temperatures in the
charge-density-wave (CDW) conductor NbSe. This creep develops when CDW
motion becomes limited by thermally-activated phase advance past individual
impurities, demonstrating the importance of local pinning and related
short-length-scale dynamics. Unlike in vortex lattices, elastic collective
dynamics on longer length scales results in temporally ordered motion and a
finite threshold field. A first-order dynamic phase transition from creep to
high-velocity sliding produces "switching" in the velocity-field
characteristic.Comment: 4 pages, 4 eps figures; minor clarifications To be published in Phys.
Rev. Let
Innovative interstellar explorer
An interstellar "precursor" mission has been under discussion in the scientific community for at least 30 years. Fundamental scientific questions about the interaction of the Sun with the interstellar medium can only be answered with in situ measurements that such a mission can provide. The Innovative Interstellar Explorer (IIE) and its use of Radioisotope Electric Propulsion (REP) is being studied under a NASA "Vision Mission" grant. Speed is provided by a combination of a high-energy launch, using current launch vehicle technology, a Jupiter gravity assist, and long-term, low-thrust, continuous acceleration provided by an ion thruster running off electricity provided by advanced radioisotope electric generators. A payload of ten instruments with an aggregate mass of ~35 kg and requiring ~30 W has been carefully chosen to address the compelling science questions. The nominal 20-day launch window opens on 22 October 2014 followed by a Jupiter gravity assist on 5 February 2016. The REP system accelerates the spacecraft to a "burnout" speed of 7.8 AU per year at 104 AU on 13 October 2032 (Voyager 1's current speed is ~3.6 AU/yr). The spacecraft will return at least 500 bits per second from at least 200 AU ~30 years after launch. Additional (backup) launch opportunities occur every 13 months to early 2018. In addition to addressing basic heliospheric science, the mission will ensure continued information on the far-heliospheric galactic cosmic ray population after the Voyagers have fallen silent and as the era of human Mars exploration begins
In-Situ Infrared Transmission Study of Rb- and K-Doped Fullerenes
We have measured the four IR active molecular vibrations in
as a function of doping . We observe
discontinuous changes in the vibrational spectra showing four distinct phases
(presumably , and 6). The and modes
show the largest changes shifting downward in frequency in four steps as the
doping increases. Several new very weak modes are visible in the phase
and are possibly Raman modes becoming weakly optically active. We present
quantitative fits of the data and calculate the electron-phonon coupling of the
IR mode.Comment: 3 pages, Figure 1 included, 3 more figures available by request.
REVTEX v3.0 IRC60DO
Plasmon excitations and 1D - 2D dimensional crossover in quantum crossbars
Spectrum of boson fields and two-point correlators are analyzed in quantum
crossbars (QCBs, a superlattice formed by m crossed interacting arrays of
quantum wires), with short range inter-wire capacitive interaction. Spectral
and correlation properties of double (m=2) and triple (m-3) QCBs are studied.
It is shown that the standard bosonization procedure is valid, and the system
behaves as a sliding Luttinger liquid in the infrared limit, but the high
frequency spectral and correlation characteristics have either 1D or 2D nature
depending on the direction of the wave vector in the 2D elementary cell of
reciprocal lattice. As a result, the crossover from 1D to 2D regime may be
experimentally observed. It manifests itself as appearance of additional peaks
of optical absorption, non-zero transverse space correlators and periodic
energy transfer between arrays ("Rabi oscillations")
- …
