196 research outputs found

    Electrostatics and confinement in Einstein's unified field theory

    Full text link
    A way for appending sources at the right-hand sides of the field equations of Einstein's unified field theory is recalled. Two exact solutions endowed with point sources in equilibrium are shown, and their physical meaning is discussed.Comment: 4 pages, talk given at MG11, Berlin, July 200

    Gravitational singularities via acceleration: the case of the Schwarzschild solution and Bach's gamma metric

    Full text link
    The so called gamma metric corresponds to a two-parameter family of axially symmetric, static solutions of Einstein's equations found by Bach. It contains the Schwarzschild solution for a particular value of one of the parameters, that rules a deviation from spherical symmetry. It is shown that there is invariantly definable singular behaviour beyond the one displayed by the Kretschmann scalar when a unique, hypersurface orthogonal, timelike Killing vector exists. In this case, a particle can be defined to be at rest when its world-line is a corresponding Killing orbit. The norm of the acceleration on such an orbit proves to be singular not only for metrics that deviate from Schwarzschild's metric, but also on approaching the horizon of Schwarzschild metric itself, in contrast to the discontinuous behaviour of the curvature scalar.Comment: 8 pages; text accepted for publication by Astronomische Nachrichte

    The Electrostatics of Einstein's Unified Field Theory

    Full text link
    When sources are added at their right-hand sides, and g_{(ik)} is a priori assumed to be the metric, the equations of Einstein's Hermitian theory of relativity were shown to allow for an exact solution that describes the general electrostatic field of n point charges. Moreover, the injunction of spherical symmetry of g_{(ik)} in the infinitesimal neighbourhood of each of the charges was proved to yield the equilibrium conditions of the n charges in keeping with ordinary electrostatics. The tensor g_{(ik)}, however, cannot be the metric of the theory, since it enters neither the eikonal equation nor the equation of motion of uncharged test particles. A physically correct metric that rules both the behaviour of wave fronts and of uncharged matter is the one indicated by H\'ely. In the present paper it is shown how the electrostatic solution predicts the structure of the n charged particles and their mutual positions of electrostatic equilibrium when H\'ely's physically correct metric is adopted.Comment: 15 pages. Misprints corrected. To appear in General Relativity and Gravitatio

    The physical meaning of the "boost-rotation symmetric" solutions within the general interpretation of Einstein's theory of gravitation

    Full text link
    The answer to the question, what physical meaning should be attributed to the so-called boost-rotation symmetric exact solutions to the field equations of general relativity, is provided within the general interpretation scheme for the ``theories of relativity'', based on group theoretical arguments, and set forth by Erich Kretschmann already in the year 1917.Comment: 9 pages, 1 figure; text to appear in General Relativity and Gravitatio

    Immunosuppression in cancer therapeutics.

    No full text
    corecore