2,508 research outputs found
Some features of the fabrication of multilayer fiber composites by explosive welding
The fabrication of multilayer fiber composites by explosive welding is characterized by intense plastic deformation of the matrix material as it fills the spaces between fibers and by high velocity of the collision between matrix layers due to acceleration in the channels between fibers. The plastic deformation of the matrix layers and fiber-matrix friction provide mechanical and thermal activation of the contact surfaces, which contributes to the formation of a bond. An important feature of the process is that the fiber-matrix adhesion strength can be varied over a wide range by varying the parameters of impulsive loading
Activity of the right cardiac ventricle and metabolism in healthy persons during an orthostatic test after short term immobilization
A 15 minute orthostatic test was performed on healthy male volunteers under conditions of catheterization of the right ventricle of the heart and the radial (or brachial) artery before and after 5 day bedrest in an antiorthostatic position of the body (with the foot of the bed raised 4.5 degrees). The change to a vertical position after immobilization was attended by a more marked increase in the rate of cardiac contractions, an increase of max dp/dt pressure in the right ventricle, and a decrease of cardiac and stroke indices. The decrease of the cardiac index was compensated for, to a certain measure, by a further increase in the extraction and utilization of O2 by the tissues. The arterial blood pH did not change essentially, while the decrease in pCO2 and content of standard bicarbonate was more marked
On the Fermionic Frequencies of Circular Strings
We revisit the semiclassical computation of the fluctuation spectrum around
different circular string solutions in AdS_5xS^5 and AdS_4xCP^3, starting from
the Green-Schwarz action. It has been known that the results for these
frequencies obtained from the algebraic curve and from the worldsheet
computations sometimes do not agree. In particular, different methods give
different results for the half-integer shifts in the mode numbers of the
frequencies. We find that these discrepancies can be removed if one carefully
takes into account the transition matrices in the spin bundle over the target
space.Comment: 13 pages, 1 figur
Exact computation of one-loop correction to energy of pulsating strings in AdS_5 x S^5
In the present paper, which is a sequel to arXiv:1001:4018, we compute the
one-loop correction to the energy of pulsating string solutions in AdS_5 x S^5.
We show that, as for rigid spinning string elliptic solutions, the fluctuation
operators for pulsating solutions can be also put into the single-gap Lame'
form. A novel aspect of pulsating solutions is that the one-loop correction to
their energy is expressed in terms of the stability angles of the quadratic
fluctuation operators. We explicitly study the "short string" limit of the
corresponding one-loop energies, demonstrating a certain universality of the
form of the energy of "small" semiclassical strings. Our results may help to
shed light on the structure of strong-coupling expansion of anomalous
dimensions of dual gauge theory operators.Comment: 49 pages; v2: appendix F and note about antiperiodic fermions added,
typos corrected, references adde
Field- and irradiation-induced phenomena in memristive nanomaterials
The breakthrough in electronics and information technology is anticipated by the development of emerging memory and logic devices, artificial neural networks and brain-inspired systems on the basis of memristive nano-materials represented, in a particular case, by a simple 'metal-insulator-metal' (MIM) thin-film structure. The present article is focused on the comparative analysis of MIM devices based on oxides with dominating ionic (ZrOx, HfOx) and covalent (SiOx, GeOx) bonding of various composition and geometry deposited by magnetron sputtering. The studied memristive devices demonstrate reproducible change in their resistance (resistive switching - RS) originated from the formation and rupture of conductive pathways (filaments) in oxide films due to the electric-field-driven migration of oxygen vacancies and/or mobile oxygen ions. It is shown that, for both ionic and covalent oxides under study, the RS behaviour depends only weakly on the oxide film composition and thickness, device geometry (down to a device size of about 20x20 mu m(2)). The devices under study are found to be tolerant to ion irradiation that reproduces the effect of extreme fluences of high-energy protons and fast neutrons. This common behaviour of RS is explained by the localized nature of the redox processes in a nanoscale switching oxide volume. Adaptive (synaptic) change of resistive states of memristive devices is demonstrated under the action of single or repeated electrical pulses, as well as in a simple model of coupled (synchronized) neuron-like generators. It is concluded that the noise-induced phenomena cannot be neglected in the consideration of a memristive device as a nonlinear system. The dynamic response of a memristive device to periodic signals of complex waveform can be predicted and tailored from the viewpoint of stochastic resonance concept. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
A facility to Search for Hidden Particles (SHiP) at the CERN SPS
A new general purpose fixed target facility is proposed at the CERN SPS
accelerator which is aimed at exploring the domain of hidden particles and make
measurements with tau neutrinos. Hidden particles are predicted by a large
number of models beyond the Standard Model. The high intensity of the SPS
400~GeV beam allows probing a wide variety of models containing light
long-lived exotic particles with masses below (10)~GeV/c,
including very weakly interacting low-energy SUSY states. The experimental
programme of the proposed facility is capable of being extended in the future,
e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa
Generalized cusp in AdS_4 x CP^3 and more one-loop results from semiclassical strings
We evaluate the exact one-loop partition function for fundamental strings
whose world-surface ends on a cusp at the boundary of AdS_4 and has a "jump" in
CP^3. This allows us to extract the stringy prediction for the ABJM generalized
cusp anomalous dimension Gamma_{cusp}^{ABJM} (phi,theta) up to NLO in
sigma-model perturbation theory. With a similar analysis, we present the exact
partition functions for folded closed string solutions moving in the AdS_3
parts of AdS_4 x CP^3 and AdS_3 x S^3 x S^3 x S^1 backgrounds. Results are
obtained applying to the string solutions relevant for the AdS_4/CFT_3 and
AdS_3/CFT_2 correspondence the tools previously developed for their AdS_5 x S^5
counterparts.Comment: 48 pages, 2 figures, version 3, corrected misprints in formulas 2.12,
B.86, C.33, added comment on verification of the light-like limi
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Review of AdS/CFT Integrability, Chapter II.2: Quantum Strings in AdS5xS5
We review the semiclassical analysis of strings in AdS5xS5 with a focus on
the relationship to the underlying integrable structures. We discuss the
perturbative calculation of energies for strings with large charges, using the
folded string spinning in an AdS3 subset of AdS5 as our main example.
Furthermore, we review the perturbative light-cone quantization of the string
theory and the calculation of the worldsheet S-matrix.Comment: 20 pages, see also overview article arXiv:1012.3982, v2: references
to other chapters update
- …
