153 research outputs found
Systematic Influence of Perceived Grasp Shape on Speech Production
Previous research has shown that precision and power grip performance is consistently influenced by simultaneous articulation. For example, power grip responses are performed relatively fast with the open-back vowel [a], whereas precision grip responses are performed relatively fast with the close-front vowel [i]. In the present study, the participants were presented with a picture of a hand shaped to the precision or power grip. They were required to pronounce speech sounds according to the front/above perspective of the hand. The results showed that not only the grip performance is affected by simultaneously pronouncing the speech sound but also the production of speech sound can be affected by viewing an image of a grip. The precision grip stimulus triggered relatively rapid production of the front-close vowel [i]. In contrast, the effect related to the power grip stimulus was mostly linked to the vertical dimension of the pronounced vowel since this stimulus triggered relatively rapid production of the back-open vowel [a] and back-mid-open vowel [o] while production of the back-close vowel [u] was not influenced by it. The fact that production of the dorsal consonant [k] or coronal consonant [t] were not influenced by these stimuli suggests that the effect was not associated with a relative front-back tongue shape of the articulation in the absence of changes in any vertical articulatory components. These findings provide evidence for an intimate interaction between certain articulatory gestures and grip types, suggesting that an overlapping visuomotor network operates for planning articulatory gestures and grasp actions.Peer reviewe
Connections between articulations and grasping
The idea that hand gestures and speech are connected is quite old. Some of these theories even suggest that language is primarily based on a manual communication system. In this thesis, I present four studies in which we studied the connections between articulatory gestures and manual grasps. The work is based on an earlier finding showing systematic connections between specific articulatory gestures and grasp types. For example, uttering a syllable such as [kɑ] can facilitate power grip responses, whereas uttering a syllable such as [ti] can facilitate precision grip responses. I will refer to this phenomenon as the articulation-grip congruency effect. Similarly, to the original work, we used special power and precision grip devices that the participants held in their hand to perform responses. In Study I, we measured response times and accuracy of grip responses and vocalisations to investigate whether the effect can be also observed in vocal responses, and to which extent the effect operates in the action selection processes. In Study II, grip response times were measured to investigate whether the effect persists when the syllables are only heard or read silently. Study III investigated the influence of grasp planning and/or execution on categorizing perceived syllables. In Study IV, we measured electrical activity in the brain during listening of syllables that were either congruent or incongruent with the precision or power grip, and we investigated how performing different grips affected the auditory processing of the heard syllables.
The results of Study I showed that besides manual facilitation, the effect is observed also in vocal responses, both when a simultaneous grip is executed and when it is only prepared, meaning that overt execution is not needed for the effect. This suggests that the effect operates in action planning. In addition, the effect was also observed when the participants knew beforehand which response they should execute, suggesting that the effect is not based on the action selection processes. Study II showed that the effect was also observed when the syllables were heard or read silently, supporting the view that articulatory simulation of a perceived syllable can activate the motor program of the grasp which is congruent with the syllable. Study III revealed that grip preparation can influence categorization of perceived syllables. The participants were biased to categorize noise-masked syllables as being [ke] rather than [te] when they were prepared to execute the power grip, and vice versa when they were prepared to execute the precision grip. Finally, Study IV showed that grip performance also modulates early auditory processing of heard syllables.
These results support the view that articulatory and hand motor representations form a partly shared network, where activity from one domain can induce activity in the other. This is in line with earlier studies that have shown more general linkage between mouth and manual processes and expands this notion of hand-mouth interaction by showing that these connections can also operate between very specific hand and articulatory gestures.Ajatus käden eleiden ja puheen välisistä yhteyksistä on melko vanha. Jotkut teoriat jopa ehdottavat, että kieli pohjautuu pääosin käsillä tapahtuvaan kommunikointijärjestelmään. Tässä väitöskirjassa esittelen neljä osatyötä, joissa tutkimme artikulatoristen eleiden ja tarttumisotteiden välisiä yhteyksiä. Työ perustuu aiempaan löydökseen, joka paljasti systemaattisia yhteyksiä tiettyjen artikulatoristen eleiden ja tarttumisotteiden välillä. Esimerkiksi [kɑ] tavun lausuminen nopeuttaa voimaotteen tekemistä, kun taas esimerkiksi [ti] tavun lausuminen nopeuttaa pinsettiotteen tekemistä. Väitöskirjan osatyöt hyödynsivät tätä perusefektiä muokkaamalla koeasetelmaa kuhunkin tutkimuskysymykseen sopivaksi.
Osatyön I tulokset osoittivat, että yhteensopivuusefekti on havaittavissa myös lausutuissa vastauksissa. Efekti havaittiin myös, kun otteen suorittamiseen oli vain valmistauduttu. Tämä viittaa siihen, että efekti toimii toimintojen suunnittelun tasolla. Lisäksi efekti havaittiin silloinkin, kun osallistujat tiesivät etukäteen, mikä vastaus heidän tulisi suorittaa, mikä viittaa siihen, ettei efekti perustu toimintojen valintaan liittyviin prosesseihin. Osatyössä II efekti havaittiin, vaikka tavut vain kuultiin tai luettiin äänettömästä. Tämä tukee näkemystä, että havaittujen tavujen artikulatorinen simulointi voi aktivoida tavun kanssa yhteensopivan otteen motorista ohjelmaa. Osatyö III osoitti, että käden otteet voivat vaikuttaa havaittujen tavujen luokitteluun. Osallistujat olivat biasoituneet luokittelemaan esitettyjen kohinaisten tavujen olevan ennemmin [ke] kuin [te], kun he olivat valmistautuneet suorittamaan voimaotteen ja päinvastoin, kun he olivat valmistautuneet pinsettiotteen suorittamiseen. Viimeisimpänä osatyö IV osoitti, että otteiden suorittaminen vaikuttaa myös havaittujen tavujen varhaiseen auditoriseen prosessointiin.
Nämä tulokset tukevat näkemystä, että artikulatoriset ja käden motoriset edustukset muodostavat osittain jaetun verkoston, jossa aktiivisuus yhdellä osa-alueella voi aiheuttaa aktiivisuutta myös toisella. Tämä on linjassa aiheen aiempien tutkimusten kanssa, jotka ovat osoittaneet yleisempiä yhteyksiä käden ja suun toimintojen välillä. Nämä tulokset laajentavat käden ja suun välisen yhteyden ajatusta osoittamalla, että yhteydet voivat toimia myös hyvin tarkasti rajattujen artikulatoristen ja käden eleiden välillä
Connections of Grasping and Horizontal Hand Movements with Articulation in Czech Speakers
We have recently shown in Finnish speakers that articulation of certain vowels and consonants has a systematic influence on simultaneous grasp actions as well as on forward and backward hand movements. Here we studied whether these effects generalize to another language, namely Czech. We reasoned that if the results generalized to another language environment, it would suggest that the effects arise through other processes than language-dependent semantic associations. Rather, the effects would be likely to arise through language-independent interactions between processes that plan articulatory gestures and hand movements. Participants were presented with visual stimuli specifying articulations to be uttered (e.g., A or I), and they were required to produce a manual response concurrently with the articulation. In Experiment 1 they responded with a precision or a power grip, whereas in Experiment 2 they responded with a forward or a backward hand movement. The grip congruency effect was fully replicated: the consonant [k] and the vowel [alpha] were associated with power grip responses, while the consonant [t] and the vowel [i] were associated with precision grip responses. The forward/backward congruency effect was replicated with vowels [alpha], [o], which were associated with backward movement and with [ i], which was associated with forward movement, but not with consonants [k] and [ t]. These findings suggest that the congruency effects mostly reflect interaction between processes that plan articulatory gestures and hand movements with an exception that the forward/backward congruency effect might only work with vowel articulation.Peer reviewe
Congruency effect between articulation and grasping in native English speakers
Previous studies have shown congruency effects between
specific speech articulations and manual grasping actions. For
example, uttering the syllable [kɑ] facilitates power grip
responses in terms of reaction time and response accuracy. A
similar association of the syllable [ti] with precision grip has
also been observed. As these congruency effects have been to
date shown only for Finnish native speakers, this study explored
whether the congruency effects generalize to native speakers of
another language. The original experiments were therefore
replicated with English participants (N=16). Several previous
findings were reproduced, namely the association of syllables
[kɑ] and [ke] with power grip and of [ti] and [te] with precision
grip. However, the association of vowels [ɑ] and [i] with power
and precision grip, respectively, previously found for Finnish
participants, was not significant for English speakers. This
difference could be related to ambiguities of English
orthography and pronunciation variations. It is possible that for
English speakers seeing a certain written vowel activates
several different phonological representations associated with
that letter. If the congruency effects are based on interactions
between specific phonological representations and grasp
actions, this ambiguity might lead to weakening of the effects
in the manner demonstrated here
Inter-limb coupling of proximal and distal hand actions
Past studies have revealed connections in directional programming between hands. The present study investigated whether there could also be interaction in programming proximal and distal components of a prehensile hand action. In Experiment 1, the participants performed simultaneously either a push or pull response with the left hand and the grip closure or opening with the right hand. In Experiment 2, the push and pull responses of the left hand were performed together with the precision or power grip responses of the right hand. The participants showed preference, measured in reaction times, to couple the push response with the grip opening and the precision grip, whereas the pull response was associated with the grip closure and the power grip. The study shows for the first time a systematic interaction in proximal and distal prehensile components between two hands. We propose that these effects reflect inter- and intra-limb connections between the representations that prepare the arm extension for the outward reaching, the finger extension for the grip opening, and the motor processes that prepare the precision grip. Conversely, there appear to be connections between the representations that prepare the arm flexion for the inward directed hand movements, the flexion of the thumb and the fingers for the grip closure, and flexion of four fingers for the power grip.Peer reviewe
Preparation and execution of teeth clenching and foot muscle contraction influence on corticospinal hand-muscle excitability
Contraction of a muscle modulates not only the corticospinal excitability (CSE) of the contracting muscle but also that of different muscles. We investigated to what extent the CSE of a hand muscle is modulated during preparation and execution of teeth clenching and ipsilateral foot dorsiflexion either separately or in combination. Hand-muscle CSE was estimated based on motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) and recorded from the first dorsal interosseous (FDI) muscle. We found higher excitability during both preparation and execution of all the motor tasks than during mere observation of a fixation cross. As expected, the excitability was greater during the execution phase than the preparation one. Furthermore, both execution and preparation of combined motor tasks led to higher excitability than individual tasks. These results extend our current understanding of the neural interactions underlying simultaneous contraction of muscles in different body parts.Peer reviewe
Greenhouse gas emission reductions achieved by biogas use in local energy production Case: Rantasalmi
Connecting directional limb movements to vowel fronting and backing
It has been shown recently that when participants are required to pronounce a vowel at the same time with the hand movement, the vocal and manual responses are facilitated when a front vowel is produced with forward-directed hand movements and a back vowel is produced with backward-directed hand movements. This finding suggests a coupling between spatial programing of articulatory tongue movements and hand movements. The present study revealed that the same effect can be also observed in relation to directional leg movements. The study suggests that the effect operates within the common directional processes of movement planning including at least tongue, hand and leg movements, and these processes might contribute sound-to-meaning mappings to the semantic concepts of 'forward' and 'backward'.Peer reviewe
Kansallisen Pitkäaikaissäilytyksen hiilijalanjälki
Pistäytymisklinikan esittely Digime2022-seminaarissa ”Tarjolla tänään ja huomenna: Digitaalinen kulttuuriperintö” 14.10.2022
Mismatch negativity (MMN) to speech sounds is modulated systematically by manual grip execution
Manual actions and speech are connected: for example, grip execution can influence simultaneous vocalizations and vice versa. Our previous studies show that the consonant [k] is associated with the power grip and the consonant [t] with the precision grip. Here we studied whether the interaction between speech sounds and grips could operate already at a pre-attentive stage of auditory processing, reflected by the mismatch-negativity (MMN) component of the event-related potential (ERP). Participants executed power and precision grips according to visual cues while listening to syllable sequences consisting of [ke] and [te] utterances. The grips modulated the MMN amplitudes to these syllables in a systematic manner so that when the deviant was [ke], the MMN response was larger with a precision grip than with a power grip. There was a converse trend when the deviant was [te]. These results suggest that manual gestures and speech can interact already at a pre-attentive processing level of auditory perception, and show, for the first time that manual actions can systematically modulate the MMN. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe
- …
