1,100 research outputs found

    Initial condition for hydrodynamics, partonic free streaming, and the uniform description of soft observables at RHIC

    Full text link
    We investigate the role of the initial condition used for the hydrodynamic evolution of the system formed in ultra-relativistic heavy-ion collisions and find that an appropriate choice motivated by the models of early-stage dynamics, specifically a simple two-dimensional Gaussian profile, leads to a uniform description of soft observables measured in the Relativistic Heavy-Ion Collider (RHIC). In particular, the transverse-momentum spectra, the elliptic-flow, and the Hanbury-Brown--Twiss correlation radii, including the ratio R_out/R_side as well as the dependence of the radii on the azimuthal angle (azHBT), are properly described. We use the perfect-fluid hydrodynamics with a realistic equation of state based on lattice calculations and the hadronic gas at high and low temperatures, respectively. We also show that the inclusion of the partonic free-streaming in the early stage allows to delay the start of the hydrodynamical description to comfortable times of the order of 1 fm/c. Free streaming broadens the initial energy-density profile, but generates the initial transverse and elliptic flow. The data may be described equally well when the hydrodynamics is started early, or with a delay due to partonic free-streaming.Comment: 4 pages, 4 figure

    Free-streaming approximation in early dynamics of relativistic heavy-ion collisions

    Full text link
    We investigate an approximation to early dynamics in relativistic heavy-ion collisions, where after formation the partons are free streaming and around the proper time of 1 fm/c undergo a sudden equilibration described in terms of the Landau matching condition. We discuss physical and formal aspects of this approach. In particular, we show that initial azimuthally asymmetric transverse flow develops for non-central collisions as a consequence of the sudden equilibration. Moreover, the energy-momentum tensor from the free-streaming stage matches very smoothly to the form used in the transverse hydrodynamics, whereas matching to isotropic hydrodynamics requires a more pronounced change in the energy-momentum tensor. After the hydrodynamic phase statistical hadronization is carried out with the help of THERMINATOR. The physical results for the transverse-momentum spectra, the elliptic-flow, and the Hanbury-Brown--Twiss correlation radii, including the ratio R_out/R_side as well as the dependence of the radii on the azimuthal angle (azHBT), are properly described within our approach. The agreement is equally good for a purely hydrodynamic evolution started at an early proper time of 0.25 fm/c, or for the free streaming started at that time, followed by the sudden equilibration at tau ~1 fm/c and then by perfect hydrodynamics. Thus, the inclusion of free streaming allows us to delay the start of hydrodynamics to more realistic times of the order of 1 fm/c.Comment: 10 pages, 12 figure

    Experimental infections of different carp strains with the carp edema virus (CEV) give insights into the infection biology of the virus and indicate possible solutions to problems caused by koi sleepy disease (KSD) in carp aquaculture

    Get PDF
    Outbreaks of koi sleepy disease (KSD) caused by carp edema virus (CEV) may seriously affect populations of farmed common carp, one of the most important fish species for global food production. The present study shows further evidence for the involvement of CEV in outbreaks of KSD among carp and koi populations: in a series of infection experiments, CEV from two different genogroups could be transmitted to several strains of naïve common carp via cohabitation with fish infected with CEV. In recipient fish, clinical signs of KSD were induced. The virus load and viral gene expression results confirm gills as the target organ for CEV replication. Gill explants also allowed for a limited virus replication in vitro. The in vivo infection experiments revealed differences in the virulence of the two CEV genogroups which were associated with infections in koi or in common carp, with higher virulence towards the same fish variety as the donor fish. When the susceptibility of different carp strains to a CEV infection and the development of KSD were experimentally investigated, Amur wild carp showed to be relatively more resistant to the infection and did not develop clinical signs for KSD. However, the resistance could not be related to a higher magnitude of type I IFN responses of affected tissues. Despite not having a mechanistic explanation for the resistance of Amur wild carp to KSD, we recommend using this carp strain in breeding programs to limit potential losses caused by CEV in aquaculture

    BˉXsγ\bar{B}\to X_s \gamma in the Two Higgs Doublet Model up to Next-to-Next-to-Leading Order in QCD

    Get PDF
    We compute three-loop matching corrections to the Wilson coefficients C7C_7 and C8C_8 in the Two Higgs Doublet Model by applying expansions for small, intermediate and large charged Higgs boson masses. The results are used to evaluate the branching ratio of BˉXsγ\bar{B}\to X_s \gamma to next-to-next-to leading order accuracy, and to determine an updated lower limit on the charged Higgs boson mass. We find \mhplus \ge 380 GeV at 95% confidence level when the recently completed BABAR data analysis is taken into account. Our results for the charged Higgs contribution to the branching ratio exhibit considerably weaker sensitivity to the matching scale μ0\mu_0, as compared to previous calculations.Comment: 20 pages, 15 figures; v2: minor modifications, matches published version in JHE

    Visual Occam: High level visualization and design of process networks

    Full text link
    With networks, multiprocessors, and multi-threaded systems becoming more common in our world it is increasingly evident that concurrent programming is not something to be ignored or marginalized even though many takes on concurrency (mainly by means of monitors or shared resources) have proven to be difficult to deal with on large scales. Thankfully, a good deal of work has already been done to combat this, through CSP, occam, and other such derivatives, to produce a scalable process oriented paradigm. Still, it is cumbersome to attempt to deal with the intricacies of such communicating networks down to every minutia; if, instead, it was possible to manage communicating elements on a higher level it would be far more practical to design large scale networks of processes! As such, Visual Occam has been designed to automate some of the inner workings of occam to allow any user (novice or otherwise) the ability to create complex networks of communicating processes through easy to understand user interactions and interfaces. Taking a number of cues from digital circuit design software and modern integrated development environments, it is possible to select components (both predefined and arbitrarily complex user created systems) from a library of objects, hook them together in a network, and produce compilable code without having to worry about how or why the chosen components perform their function. Since any of these components may themselves be networks of processes, it becomes trivial to construct large systems that would otherwise be unwieldy to put together by hand. The end result? A high level, easy to understand, visual abstraction of those concurrent networks previously so frustrating to develop

    Front Form Spinors in Weinberg-Soper Formalism and Melosh Transformations for any Spin

    Full text link
    Using the Weinberg-Soper formalism we construct the front form (j,0)(0,j)(j,0)\oplus(0,j) spinors. Explicit expressions for the generalised Melosh transformations up to spin two are obtained. The formalism, without explicitly invoking any wave equations, reproduces spin one half front-form results of Melosh, Lepage and Brodsky, and Dziembowski.Comment: 16 Pages, RevTex. We continue to receive reprint requests for this paper. So we now archive it her

    Тенденції розвитку національної інноваційної системи в Україні

    Get PDF
    Проаналізовано національну інноваційну систему України. Розглянуто галузі промисловості України за ознаками інноваційної активності та досліджено темпи зростання показників, враховуючи індекс інфляції. Встановлено, що спад темпів зростання динаміки реалізованої продукції призводить до зменшення витрат на інноваційну діяльність.Дан анализ национальной инновационной системы Украины. Рассмотрены отрасли промышленности Украины по признакам инновационной активности и исследованы темпы роста показателей, учитывая индекс инфляции. Установлено, что спад темпов роста динамики реализованной продукции приводит к уменьшению затрат на инновационную деятельность.This article analyses national innovation system of Ukraine. Examined the industry of Ukraine based on innovative activity and investigated the growth indicators, taking into account inflation-index. It is established that the slowdown in the dynamics realized production leads to a decrease in the cost of innovation

    Guidance on allergenicity assessment of genetically modified plants

    Get PDF
    This document provides supplementary guidance on specific topics for the allergenicity risk assessment of genetically modified plants. In particular, it supplements general recommendations outlined in previous EFSA GMO Panel guidelines and Implementing Regulation (EU) No 503/2013. The topics addressed are non-IgE-mediated adverse immune reactions to foods, in vitro protein digestibility tests and endogenous allergenicity. New scientific and regulatory developments regarding these three topics are described in this document. Considerations on the practical implementation of those developments in the risk assessment of genetically modified plants are discussed and recommended, where appropriate. (C) 2017 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority

    Functional consequences of Palaeozoic reef collapse

    Get PDF
    Biogenic reefs have been hotspots of biodiversity and evolutionary novelty throughout the Phanerozoic. The largest reef systems in Earth’s history occurred in the Devonian period, but collapsed during the Late Devonian Mass Extinction. However, the consequences for the functional diversity of Palaeozoic reefs have received little attention. Here, we examine changes in the functional diversity of tabulate coral assemblages over a 35 million year period from the middle Devonian to the Carboniferous, straddling the multiphase extinction event to identify the causes and ecological consequences of the extinction for tabulate corals. By examining five key morphological traits, we show a divergent response of taxonomic and functional diversity to the mass extinction: taxonomic richness peaked during the Givetian (~ 388–383 Ma) and coincided with peak reef building, but functional diversity was only moderate because many species had very similar trait combinations. The collapse of taxonomic diversity and reef building in the late Devonian had minimal impact on functional richness of coral assemblages. However, non-random shifts towards species with larger corallites and lower colony integration suggest a shift from photosymbiotic to asymbiotic taxa associated over the study period. Our results suggest that the collapse of the huge Devonian reef systems was correlated with a breakdown of photosymbiosis and extinction of photosymbiotic tabulate coral taxa. Despite the appearance of new tabulate coral species over the next 35 million years, the extinction of taxa with photosymbiotic traits had long-lasting consequences for reef building and, by extension, shallow marine ecosystems in the Palaeozoic

    Blood flow rate estimation in optic disc capillaries and vessels using Doppler optical coherence tomography with 3D fast phase unwrapping

    Get PDF
    The retinal volumetric flow rate contains useful information not only for ophthalmology but also for the diagnosis of common civilization diseases such as diabetes, Alzheimer's disease, or cerebrovascular diseases. Non-invasive optical methods for quantitative flow assessment, such as Doppler optical coherence tomography (OCT), have certain limitations. One is the phase wrapping that makes simultaneous calculations of the flow in all human retinal vessels impossible due to a very large span of flow velocities. We demonstrate that three-dimensional Doppler OCT combined with three-dimensional four Fourier transform fast phase unwrapping (3D 4FT FPU) allows for the calculation of the volumetric blood flow rate in real-time by the implementation of the algorithms in a graphics processing unit (GPU). The additive character of the flow at the furcations is proven using a microfluidic device with controlled flow rates as well as in the retinal veins bifurcations imaged in the optic disc area of five healthy volunteers. We show values of blood flow rates calculated for retinal capillaries and vessels with diameters in the range of 12-150 µm. The potential of quantitative measurement of retinal blood flow volume includes noninvasive detection of carotid artery stenosis or occlusion, measuring vascular reactivity and evaluation of vessel wall stiffness
    corecore