55 research outputs found
Development of Holographic Sensors for Monitoring Relative Humidity and Temperature
Photonic structures capable of responding to an analyte with an easily identifiable change in their optical properties have generated wide interest due to their possible application as holographic sensors. Holographic sensors are considered a low-cost, lightweight and disposable technology, and have potential for application in different areas ranging from medical diagnostics to environmental sensing including the monitoring of environmental temperature and relative humidity. In spite of the existing wide range of temperature and humidity sensors, holographic sensors are of special interest as they can provide fast, real-time, reversible or irreversible, visual colorimetric or electronic readouts. The main objective of this project was the development of holographic sensors with response to relative humidity and/or temperature. Holographic humidity sensors were fabricated by holographic recording of volume phase transmission gratings in acrylamide /diacetone acrylamide-based photopolymers containing polyvinyl alcohol as a binder. The diffraction efficiency and the Bragg angle were found to be humidity dependent in the relative humidity range 20 - 90 %. It was shown that reversibility of the response, sensitivity and operation range of the sensor can be tuned by varying the photopolymer composition. Best sensitivity up to 3%DE/%RH was observed for diacetone acrylamide-based gratings in the relative humidity range 70 - 90 %. A novel thermosensitive photopolymer containing N-isopropylacrylamide as the main monomer was developed. The diffraction efficiency up to 80 % in transmission mode and 20 % in reflection mode was achieved. It was demonstrated that the temperature switchable swelling/shrinking of the novel N-isopropylacrylamide-based photopolymer can be implemented in the development of holographic temperature sensors, temperature visual indicators and holographic optical elements with temperature controlled direction of the diffracted light and diffraction efficiency. Best sensitivity up to 2%DE/oC and 4.3nm/oC was obtained for sensors based on volume phase transmission and reflection gratings, respectively. For the first time, an optical sensor based on the surface relief structure with reversible response to relative humidity in the range 35 - 97 % was developed. The device comprises the Aztec grating as a substrate and a coating thin polymer film as a sensing medium. It was demonstrated that alteration of the coating layer composition allows tuning the operation range and sensitivity of the device
Investigation of the Sensitivity to Humidity of an Acrylamide-based Photopolymer Containing N-phenylglycine as a Photoinitiator
Sensitivity of holographic recording materials to the relative humidity (RH) of the environment often restricts their use in fabrication of holographic optical elements and other applications. It is important to develop materials with little or no sensitivity to humidity. In this paper the humidity response of transmission gratings recorded in an acrylamide-based photopolymer containing N-phenylglycine (NPG) as a photoinitiator is studied at RH = 20 – 90 %. The hologram is found to be completely insensitive to humidity at RH below 70 % and its diffraction efficiency remains constant. A decrease in diffraction efficiency is observed at RH = 80 – 90 % but this decrease is fully reversible, demonstrating quantitatively the NPG photopolymer’s excellent resistance to humidity
N-isopropylacrylamide-based Photopolymer for Holographic Recording of Thermosensitive Transmission and Reflection Grating
In recent years, functionalized photopolymer systems capable of holographic recording are in great demand due to their potential use in the development of holographic sensors. This work presents a newly developed Nisopropylacrylamide(NIPA)-based photopolymer for holographic recording in reflection and transmission modes. The optimized composition of the material is found to reach refractive index modulation of up to 5 10-3 and 1.6 10-3 after recording in transmission and reflection mode, respectively. In addition to fulfilling the requirements for holographic recording materials, the NIPA-based photopolymer is sensitive to temperature and has lower toxicity than acrylamide-based photopolymers. Possible application of the NIPA-based photopolymer in the development of a holographic temperature sensor is discussed
Holographic Multiplexing in a Photopolymerisable Hybrid Sol-Gel
Holographic multiplexing techniques enhance functionality and information storage by leveraging the inherent selectivity of holograms. This is crucial for advancing holographic sensors, which excel in simultaneously detecting multiple parameters from a single input signal. This study explores the potential of the recent photopolymerisable hybrid sol-gel (PHSG) material for application in Space sensing systems through the investigation of its holographic angular multiplexing capabilities. For the first time, to the best of our knowledge, we report the successful recording of up to five angularly multiplexed gratings with diffraction efficiencies (DE) ≥ 15% in 187 ± 18 µm PHSG layers. A 3 mW/cm2 laser beam was used to record gratings (0–20° angular separation) with a spatial frequency of 800 ± 20 lines/mm utilising different exposure times. The study revealed that each successive multiplexing in the single-layer region resulted in a decrease in the material’s recording sensitivity. Holographic recording sensitivity and DE growth during the grating formation period depend on the number of gratings multiplexed in the layer. The seven-month-old, multiplexed gratings demonstrate consistent DE, stable angular selectivity and diffraction angle. This study positions the PHSG material as a promising candidate for developing reliable multiplexed devices
Humidity and Temperature Induced Changes in the Diffraction Efficiency and the Bragg Angle of Slanted Photopolymer-based Holographic Gratings
This work explores the humidity and temperature response of volume phase slanted gratings recorded in photopolymers with varied chemical composition. Acrylamide and diacetone acrylamide were used as monomers and triethanolamine and N-phenylglycine were used as photoinitiators. The study demonstrates that the response of photopolymer-based holographic gratings to relative humidity (RH) and temperature (T) can be tuned by alteration of the photopolymer composition.Humidity and temperature response of the holograms has been characterized by recording Bragg selectivity curves of transmission gratings and by monitoring the position of the maximum intensity in the spectral response of reflection gratings. Investigation of the humidity response in the range of 20–90% RH reveals that photopolymers containing triethanolamine are more responsive to moisture than photopolymers containing N-phenylglycine and display significant sensitivity to relative humidity above 40%. Full reversibility of humidity induced changes in gratings recorded in diacetone acrylamide-based photopolymer is confirmed at RH≤60%. Exposure to RH≥70% leads to irreversible changes in these gratings.The temperature response of slanted transmission gratings was investigated in the temperature range of 20–60°C. Exposure of the photopolymer layers containing triethanolamine to elevated temperature was found to cause layer shrinkage due to desorption of absorbed water. Sealed layers containing triethanolamine, however, demonstrated swelling due to the effect of thermal expansion. The photopolymer layers containing N-phenylglycine were found to be unresponsive to temperature changes below 30°C and have sensitivity to temperature above 30°C
Investigation of the UV-resistance of photopolymerisable glass for space applications
The progress of space based scientific research leads to an increasing demand for more efficient and less bulky instruments. Conventional refractive elements make up a critical part of many optical instruments launched into space; however, they can be bulky and heavy. Holographic optical elements are an efficient alternative to replace the conventional optical elements as they are lightweight and can be miniaturized. Current materials typically used for volume holographic optical elements are not robust enough for use in space environment. Recently a promising photopolymerisable glass has been developed using a sol-gel technique, which can provide dry layers suitable for holographic recording with a significantly lower curing time. In addition, the material has shown stability after exposure to high humidity and temperatures up to 130°C. However, its UV resistance needs to be improved in order to satisfy the requirements for application in space. The main goal of this work is to study and improve the UV resistance of the photopolymerisable glass. The following approaches have been used: 1) post-recording exposure to uniform laser beam and 2) modification of the material composition. It was found that exposing the material to a uniform beam immediately after the recording improves UV resistance and provides stability of the layer. The effect of the chemical composition of the material on its UV resistance was also studied by varying the concentration of the dye and adding Polyurethane Diol to improve its elastic properties. The performance of the material was tested by studying the optical properties of transmission gratings recorded in the layers, such as diffraction efficiency and refractive index modulation, before and after UV exposure. The first experimental results for both approaches have shown promising results and the potential routes for further developments have been identified
Improving the Holographic Recording Characteristics of a Water-Resistant Photosensitive Sol–Gel for Use in Volume Holographic Optical Elements
Continual improvements to holographic recording materials make the development of volume holographic optical elements increasingly more attainable for applications where highly efficient, lightweight diffractive optical elements can replace conventional optics. A fast-curing, water resistant photosensitive sol–gel capable of volume holographic recording has recently drawn attention for its extreme environmental and physical robustness, in particular its water/moisture and scratch resistance. However, to date, the refractive index modulation has been limited. While water-resistant properties are invaluable in the face of the weathering which many practical systems for outdoor applications will endure, high refractive index modulation is also important in order to facilitate high diffraction efficiency holograms recorded in relatively thin layers. Lower grating thickness ensures a large angular and wavelength range of operation-properties that are critical for many applications of holographic optical elements such as solar light harvesting, optical displays and illumination management. For any application where low-cost mass production is envisaged, sensitivity/writing speed is also a crucial factor. In this research, we studied the recording properties of these water resistant photosensitive sol–gel layers at two different recording wavelengths (532 and 476 nm) and investigated methods for improving these properties. We report more than two-fold improvement of the refractive index modulation from 1.4 10 3 to 3.3 10 3 in layers of thickness ranging from 40–100 m and more than an order of magnitude increase in photosensitivity/recording speed through better matching between recording wavelength and layer absorption, chemical alterations and thermal post-processing techniques
Color-Changing Reflection Hologram for Quality Assurance of Therapeutic Ultrasound Systems
The acoustic output of clinical therapeutic ultrasound equipment requires regular quality assurance (QA) testing to ensure the safety and efficacy of the treatment and that any potentially harmful deviations from the expected output power density are detected as soon as possible. A hologram, consisting of a reflection grating fabricated in an acrylate photopolymer film, has been developed to produce an immediate, visible, and permanent change in the color of the reconstructed hologram from red to green in response to incident ultrasound energy. The influence of the therapeutic ultrasound insonation parameters (exposure time, ultrasound power density, and proximity to the point of maximum acoustic pressure) on the hologram’s response has been investigated for two types of therapeutic ultrasound systems: a sonoporation system and an ultrasound physiotherapy system. Findings show that, above a switching temperature of 45 °C, the ultrasound-induced temperature rise produces a structural change in the hologram, which manifests as a visible color change. The area of the color change region correlates with the ultrasound exposure conditions. The suitability of the hologram as a simple and quick QA test tool for therapeutic ultrasound systems has been demonstrated. A prototype ultrasound testing unit which facilitates user-friendly, reproducible testing of the holograms in a clinical setting is also reported
INVESTIGATION OF TEMPERATURE RESPONSE OF PHOTOPOLYMER MATERIAL USED FOR HOLOGRAPHIC SENSOR
Recently, functionalised photopolymer has emerged as a versatile recording material in the field of optical holography due to its novel characteristics and potential use in the development of holographic based sensors, and optical elements. This work describes the temperature response of a newly developed photopolymer, containing of a monomer Nisopropylacrylamide (NIPA) which under photopolymerisation forms a temperature sensitive polymer - Poly(Nisopropylacrylamide) (PNIPA). The photonic sensor was developed by holographic recording of volume phase transmission gratings in a self-processing NIPA-based polymer with a 532 nm laser beam. A 633 nm probe beam was used to monitor real time diffraction efficiency (DE) growth curve and the temperature dependent response of DE in the temperature range 22-50 oC. It was observed that the DE increased with increasing temperature at 10 oC min-1 and started to drop by reversing the temperature at 5 oC min-1. It was also observed that the response depends on the rate of heating/cooling and the time spent at elevated temperature. The observed response to temperature could be used to design an indicator for packaging, showing that the content of the package has been exposed to a temperature that was above a predetermined temperature limit
Improving the Holographic Recording Characteristics of a Water-Resistant Photosensitive Sol–Gel for Use in Volume Holographic Optical Elements
Continual improvements to holographic recording materials make the development of volume holographic optical elements increasingly more attainable for applications where highly efficient, lightweight diffractive optical elements can replace conventional optics. A fast-curing, water resistant photosensitive sol–gel capable of volume holographic recording has recently drawn attention for its extreme environmental and physical robustness, in particular its water/moisture and scratch resistance. However, to date, the refractive index modulation has been limited. While water-resistant properties are invaluable in the face of the weathering which many practical systems for outdoor applications will endure, high refractive index modulation is also important in order to facilitate high diffraction efficiency holograms recorded in relatively thin layers. Lower grating thickness ensures a large angular and wavelength range of operation-properties that are critical for many applications of holographic optical elements such as solar light harvesting, optical displays and illumination management. For any application where low-cost mass production is envisaged, sensitivity/writing speed is also a crucial factor. In this research, we studied the recording properties of these water resistant photosensitive sol–gel layers at two different recording wavelengths (532 and 476 nm) and investigated methods for improving these properties. We report more than two-fold improvement of the refractive index modulation from 1.4 10 3 to 3.3 10 3 in layers of thickness ranging from 40–100 m and more than an order of magnitude increase in photosensitivity/recording speed through better matching between recording wavelength and layer absorption, chemical alterations and thermal post-processing techniques
- …
