6,778 research outputs found
Mating disruption of citrus leafminer mediated by a noncompetitive mechanism at a remarkably low pheromone release rate.
The citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), is a worldwide pest of citrus. A season-long investigation was conducted that evaluated mating disruption for this pest. Effective disruption of the male P. citrella orientation to pheromone traps (98%) and reduced flush infestation by larvae was achieved for 221 d with two deployments of a 3:1 blend of (Z,Z,E)-7,11,13-hexadecatrienal/(Z,Z)-7,11-hexadecadienal at a remarkably low rate of 1.5 g active ingredient (AI)/ha per deployment. To gain insight into the mechanism that mediates the disruption of P. citrella, male moth catch was quantified in replicated plots of citrus treated with varying densities of pheromone dispensers. The densities of septum dispensers compared were: 0 (0/ha, 0.0 g AI/ha), 0.2 (one every fifth tree or 35/ha, 0.05 g AI/ha), 1 (215/ha, 0.29 g AI/ha), and 5 per tree (1,100/ha, 1.5 g AI/ha). Profile analysis by previously published mathematical methods matched predictions of noncompetitive mating disruption. Behavioral observations of male P. citrella in the field revealed that males did not approach mating disruption dispensers in any of the dispenser density treatments. The current report presents the first set of profile analyses combined with direct behavioral observations consistent with previously published theoretical predictions for a noncompetitive mechanism of mating disruption. The results suggest that disruption of P. citrella should be effective even at high population densities given the density-independent nature of disruption for this species and the remarkably low rate of pheromone per hectare required for efficacy
Zeeman energy and anomalous spin splitting in lateral GaAs quantum dots
The level splittings induced by a horizontal magnetic field in a parabolic
two-dimensional quantum dot with spin-orbit interaction are obtained.
Characteristic features induced by the spin-orbit coupling are the appearance
of zero-field gaps as well as energy splittings that depend on the electronic
state and the orientation of the magnetic field in the quantum-dot plane. It is
suggested that these quantum-dot properties could be used to determine the
Rashba and Dresselhaus spin-orbit intensitiesComment: 6 pages, 6 figures. To be published in Eur. Phys. J. B (2004
Large emissions from floodplain trees close the Amazon methane budget
Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests6 and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of −66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010–2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources
The biological origin of linguistic diversity
In contrast with animal communication systems, diversity is characteristic of almost every aspect of human language. Languages variously employ tones, clicks, or manual signs to signal differences in meaning; some languages lack the noun-verb distinction (e.g., Straits Salish), whereas others have a proliferation of fine-grained syntactic categories (e.g., Tzeltal); and some languages do without morphology (e.g., Mandarin), while others pack a whole sentence into a single word (e.g., Cayuga). A challenge for evolutionary biology is to reconcile the diversity of languages with the high degree of biological uniformity of their speakers. Here, we model processes of language change and geographical dispersion and find a consistent pressure for flexible learning, irrespective of the language being spoken. This pressure arises because flexible learners can best cope with the observed high rates of linguistic change associated with divergent cultural evolution following human migration. Thus, rather than genetic adaptations for specific aspects of language, such as recursion, the coevolution of genes and fast-changing linguistic structure provides the biological basis for linguistic diversity. Only biological adaptations for flexible learning combined with cultural evolution can explain how each child has the potential to learn any human language
What you know can influence what you are going to know (especially for older adults)
Stimuli related to an individual's knowledge/experience are often more memorable than abstract stimuli, particularly for older adults. This has been found when material that is congruent with knowledge is contrasted with material that is incongruent with knowledge, but there is little research on a possible graded effect of congruency. The present study manipulated the degree of congruency of study material with participants’ knowledge. Young and older participants associated two famous names to nonfamous faces, where the similarity between the nonfamous faces and the real famous individuals varied. These associations were incrementally easier to remember as the name-face combinations became more congruent with prior knowledge, demonstrating a graded congruency effect, as opposed to an effect based simply on the presence or absence of associations to prior knowledge. Older adults tended to show greater susceptibility to the effect than young adults, with a significant age difference for extreme stimuli, in line with previous literature showing that schematic support in memory tasks particularly benefits older adults
Radiative decays of heavy and light mesons in a quark triangle approach
The radiative meson decays and are
analyzed using the quark triangle diagram. Experimental data yield well
determined estimates of the universal quark-antiquark-meson couplings
and for the light meson sector. Also
predictions for the ratios of neutral to charged heavy meson decay coupling
constants are given and await experimental confirmation.Comment: 31 pages of RevTex, 5 figures, Postscript version available at
http://info.utas.edu.au/docs/physics/theory/Publications/9548.html, scheduled
to appear in Phys. Rev. D, vol 53, issue 11, 199
Quantification and viability analyses of Pseudokirchneriella subcapitata algal cells using image-based cytometry
This work aims to evaluate the feasibility of using image-based cytometry (IBC) in the analysis of algal cell quantification and viability, using Pseudokirchneriella subcapitata as a cell model. Cell concentration was determined by IBC to be in a linear range between 1×105 and 8×106 cells mL1. Algal viability was defined on the basis that the intact membrane of viable cells excludes the SYTOX Green (SG) probe. The disruption of membrane integrity represents irreversible damage and consequently results in cell death. Using IBC, we were able to successfully discriminate between live (SG-negative cells) and dead algal cells (heat-treated at 65 °C for 60 min; SG-positive cells). The observed viability of algal populations containing different proportions of killed cells was well correlated (R 2=0.994) with the theoretical viability. The validation of the use of this technology was carried out by exposing algal cells of P. subcapitata to a copper stress test for 96 h. IBC allowed us to follow the evolution of cell concentration and the viability of copper-exposed algal populations. This technology overcomes several main drawbacks usually associated with microscopy counting, such as labour-intensive experiments, tedious work and lack of the representativeness of the cell counting. In conclusion, IBC allowed a fast and automated determination of the total number of algal cells and allowed us to analyse viability. This technology can provide a useful tool for a wide variety of fields that utilise microalgae, such as the aquatic toxicology and biotechnology fields.FCT Strategic Project PEst- OE/EQB/LA0023/2013. The post-doctoral grant from FCT (SFRH/BPD/72816/2010)
Revisiting unexploited antibiotics in search of new antibacterial drug candidates: the case of MSD-819 (6-chloro-2-quinoxalinecarboxylic acid 1,4-dioxide)
Prenatal origin of childhood AML occurs less frequently than in childhood ALL
Background While there is enough convincing evidence in childhood acute lymphoblastic leukemia (ALL), the data on the pre-natal origin in childhood acute myeloid leukemia (AML) are less comprehensive. Our study aimed to screen Guthrie cards (neonatal blood spots) of non-infant childhood AML and ALL patients for the presence of their respective leukemic markers. Methods We analysed Guthrie cards of 12 ALL patients aged 2–6 years using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements (n = 15) and/or intronic breakpoints of TEL/AML1 fusion gene (n = 3). In AML patients (n = 13, age 1–14 years) PML/RARalpha (n = 4), CBFbeta/MYH11 (n = 3), AML1/ETO (n = 2), MLL/AF6 (n = 1), MLL/AF9 (n = 1) and MLL/AF10 (n = 1) fusion genes and/or internal tandem duplication of FLT3 gene (FLT3/ITD) (n = 2) were used as clonotypic markers. Assay sensitivity determined using serial dilutions of patient DNA into the DNA of a healthy donor allowed us to detect the pre-leukemic clone in Guthrie card providing 1–3 positive cells were present in the neonatal blood spot. Results In 3 patients with ALL (25%) we reproducibly detected their leukemic markers (Ig/TCR n = 2; TEL/AML1 n = 1) in the Guthrie card. We did not find patient-specific molecular markers in any patient with AML. Conclusion In the largest cohort examined so far we used identical approach for the backtracking of non-infant childhood ALL and AML. Our data suggest that either the prenatal origin of AML is less frequent or the load of pre-leukemic cells is significantly lower at birth in AML compared to ALL cases
Levels and Correlates of Non-Adherence to WHO Recommended Inter-Birth Intervals in Rufiji, Tanzania.
Poorly spaced pregnancies have been documented worldwide to result in adverse maternal and child health outcomes. The World Health Organization (WHO) recommends a minimum inter-birth interval of 33 months between two consecutive live births in order to reduce the risk of adverse maternal and child health outcomes. However, birth spacing practices in many developing countries, including Tanzania, remain scantly addressed. METHODS: Longitudinal data collected in the Rufiji Health and Demographic Surveillance System (HDSS) from January 1999 to December 2010 were analyzed to investigate birth spacing practices among women of childbearing age. The outcome variable, non-adherence to the minimum inter-birth interval, constituted all inter-birth intervals <33 months long. Inter-birth intervals >=33 months long were considered to be adherent to the recommendation. Chi-Square was used as a test of association between non-adherence and each of the explanatory variables. Factors affecting non-adherence were identified using a multilevel logistic model. Data analysis was conducted using STATA (11) statistical software. RESULTS: A total of 15,373 inter-birth intervals were recorded from 8,980 women aged 15--49 years in Rufiji district over the follow-up period of 11 years. The median inter-birth interval was 33.4 months. Of the 15,373 inter-birth intervals, 48.4% were below the WHO recommended minimum length of 33 months between two live births. Non-adherence was associated with younger maternal age, low maternal education, multiple births of the preceding pregnancy, non-health facility delivery of the preceding birth, being an in-migrant resident, multi-parity and being married. CONCLUSION: Generally, one in every two inter-birth intervals among 15--49 year-old women in Rufiji district is poorly spaced, with significant variations by socio-demographic and behavioral characteristics of mothers and newborns. Maternal, newborn and child health services should be improved with a special emphasis on community- and health facility-based optimum birth spacing education in order to enhance health outcomes of mothers and their babies, especially in rural settings
- …
