2,050 research outputs found

    Comment on "A Tale of Two Theories: Quantum Griffiths Effects in Metallic Systems" by A. H. Castro-Neto and B. A. Jones

    Full text link
    In a recent paper Castro-Neto and Jones argue that because the observability of quantum Griffiths-McCoy effects in metals is controlled by non-universal quantities, the quantum Griffiths-McCoy scenario may be a viable explanation for the non-fermi-liquid behavior observed in heavy fermion compounds. In this Comment we point out that the important non-universal quantity is the damping of the spin dynamics by the metallic electrons; quantum Griffiths-McCoy effects occur only if this is parametrically weak relative to other scales in the problem, i.e. if the spins are decoupled from the carriers. This suggests that in heavy fermion materials, where the Kondo effect leads to a strong carrier-spin coupling, quantum Griffiths-McCoy effects are unlikely to occur.Comment: 2 page

    Loschmidt-amplitude wave function spectroscopy and the physics of dynamically driven phase transitions

    No full text
    We introduce the Loschmidt amplitude as a powerful tool to perform spectroscopy of generic many-body wave functions and use it to interrogate the wave function obtained after ramping the transverse field quantum Ising model through its quantum critical point. Previous results are confirmed and a more complete understanding of the population of defects and of the effects of magnon-magnon interaction or finite-size corrections is obtained. The influence of quantum coherence is clarified

    On the Josephson Coupling between a disk of one superconductor and a surrounding superconducting film of a different symmetry

    Full text link
    A cylindrical Josephson junction with a spatially dependent Josephson coupling which averages to zero is studied in order to model the physics of a disk of d-wave superconductor embedded in a superconducting film of a different symmetry. It is found that the system always introduces Josepshon vortices in order to gain energy at the junction. The critical current is calculated. It is argued that a recent experiment claimed to provide evidence for s-wave superconductivity in YBa2Cu3O7YBa_2Cu_3O_7 may also be consistent with d-wave superconductivity. Figures available from the author on request.Comment: 10 pages, revtex3.0, TM-11111-940321-1

    Transport through an Anderson impurity: Current ringing, non-linear magnetization and a direct comparison of continuous-time quantum Monte Carlo and hierarchical quantum master equations

    Full text link
    We give a detailed comparison of the hierarchical quantum master equation (HQME) method to a continuous-time quantum Monte Carlo (CT-QMC) approach, assessing the usability of these numerically exact schemes as impurity solvers in practical nonequilibrium calculations. We review the main characteristics of the methods and discuss the scaling of the associated numerical effort. We substantiate our discussion with explicit numerical results for the nonequilibrium transport properties of a single-site Anderson impurity. The numerical effort of the HQME scheme scales linearly with the simulation time but increases (at worst exponentially) with decreasing temperature. In contrast, CT-QMC is less restricted by temperature at short times, but in general the cost of going to longer times is also exponential. After establishing the numerical exactness of the HQME scheme, we use it to elucidate the influence of different ways to induce transport through the impurity on the initial dynamics, discuss the phenomenon of coherent current oscillations, known as current ringing, and explain the non-monotonic temperature dependence of the steady-state magnetization as a result of competing broadening effects. We also elucidate the pronounced non-linear magnetization dynamics, which appears on intermediate time scales in the presence of an asymmetric coupling to the electrodes.Comment: 32 pages, 10 figures; revised versio
    corecore